首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
Akira Satoh 《Molecular physics》2014,112(16):2122-2137
We have investigated aggregation phenomena in a suspension composed of rod-like haematite particles by means of Brownian dynamics simulations. The magnetic moment of the haematite particles lies normal to the particle axis direction and therefore the present Brownian dynamics method takes into account the spin rotational Brownian motion about the particle axis. We have investigated the influence of the magnetic particle–field and particle–particle interactions, the shear rate and the volumetric fraction of particles on the particle aggregation phenomena. Snapshots of aggregate structures are used for a qualitative discussion and the cluster size distribution, radial distribution function and the orientational correlation functions of the direction of particle axis and magnetic moment are the focus for a quantitative discussion. The significant formation of raft-like clusters is found to occur at a magnetic particle–particle interaction strength much larger than that required for a magnetic spherical particle suspension. This is because the rotational Brownian motion has a significant influence on the formation of clusters in a suspension of rod-like particles with a large aspect ratio. An applied magnetic field enhances the formation of raft-like clusters. A shear flow does not have a significant influence on the internal structure of the clusters, but influences the cluster size distribution of the raft-like clusters.  相似文献   

2.
We have proposed a new repulsive layer model for describing the interaction between steric layers of coated cubic particles. This approach is an effective technique applicable to particle-based simulations such as a Brownian dynamics simulation of a suspension composed of cubic particles. 3D Brownian dynamics simulations employing this repulsive interaction model have been performed in order to investigate the equilibrium aggregate structures of a suspension composed of cubic haematite particles. It has been verified that Brownian dynamics employing the present steric interaction model are in good agreement with Monte Carlo results with respect to particle aggregate structures and particle orientational characteristics. From the viewpoint of developing a surface modification technology, we have also investigated a regime change in the aggregate structure of cubic particle in a quasi-2D system by means of Brownian dynamics simulations. If the magnetic particle–particle interaction strength is relatively strong, in zero applied magnetic field the particles aggregate in an offset face-to-face configuration. As the magnetic field strength is increased, the offset face-to-face structure is transformed into a more direct face-to-face contact configuration that extends throughout the whole simulation region.  相似文献   

3.
It is shown that a suspension of insulating particles in a liquid with low conductivity possesses bistability and has a "negative" effective viscosity effect in the electric field due to internal rotations. By Brownian dynamics simulation it has been found that thermal fluctuations of the angular velocity of particles in this bistable system can have a large effect on the viscosity of the suspension.  相似文献   

4.
We have investigated the behaviour of a suspension of magnetic rod-like hematite particles in a simple shear flow with the addition of an applied magnetic field. A significant feature of the present hematite particle suspension is the fact that the magnetic moment of the hematite particle lies normal to the particle-axis direction. From simulations, we have attempted to clarify the dependence of the negative magneto-rheological effect on the particle aggregation and orientational distribution of particles. The present Brownian dynamics method has a significant advantage in that it takes into account the spin rotational Brownian motion about the particle axis in addition to the ordinary translational and rotational Brownian motion. The net viscosity is decomposed into three components and discussed at a deeper level and in detail: these three viscosity components arise from (1) the torque due to the magnetic particle–field interaction, (2) the torque and (3) the force due to the interaction between particles. It is found that a slight change in the orientational distribution has a significant influence on the negative magneto-rheological effect. In a relatively dense suspension, the viscosity components arising from an applied magnetic field and the interaction between particles come to change rapidly for a certain strength of the magnetic particle–particle interaction, which is due to the onset of the formation of raft-like clusters.  相似文献   

5.
The low wavenumber collective diffusion coefficient of a semi-dilute suspension of spherical Brownian particles interacting via square well potential and hydrodynamic pair interaction is considered. The first two nonvanishing terms of an expansion in powers of the wavenumber are calculated. Analytical expressions are found for extremely narrow wells and in the limit of large well diameters.  相似文献   

6.
The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.  相似文献   

7.
张颖  郑宇  何茂刚 《物理学报》2018,67(16):167801-167801
光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.  相似文献   

8.
刁佳杰  陈光德  邱复生  颜国君 《中国物理》2004,13(11):1927-1930
A liquid-solid-gas interface deposition method to prepare nanoparticle thin films is presented in this paper. The nanoparticles in the part of suspension located close to the solid-liquid-gas interface grow on the substrate under the influence of interface force when the partially immersed substrate moves relatively to the suspension. By using statistical theory of the Brownian motion, growth equations for mono-component and multi-component nanoparticle thin films are obtained and some parameters for deposition process are discussed.  相似文献   

9.
Using Brownian dynamics computer simulations, we show that a two-dimensional suspension of self-propelled ("active") colloidal particles crystallizes at sufficiently high densities. Compared to the equilibrium freezing of passive particles, the freezing density is both significantly shifted and depends on the structural or dynamical criterion employed. In nonequilibrium the transition is accompanied by pronounced structural heterogeneities. This leads to a transition region between liquid and solid in which the suspension is globally ordered but unordered liquidlike "bubbles" still persist.  相似文献   

10.
We report the first observation of the dependence of the coherent-backscattering (CBS) enhanced cone with the frequency of the backscattered photon. The experiment is performed on a diffusing liquid suspension and the Doppler broadening of light is induced by the Brownian motion of the scatterers. Heterodyne detection on a CCD camera is used to measure the complex field (i.e., the hologram) of the light that is backscattered at a given frequency. The analysis of the holograms yield the frequency and the propagation direction of the backscattered photons. We observe that the angular CBS cone becomes more narrow in the tail of the Brownian spectrum. The experimental results are in good agreement with a simple theoretical model.  相似文献   

11.
《Physica A》1988,147(3):533-543
We study the contribution of Brownian motion to the viscosity of a suspension of spherical particles immersed in an incompressible fluid. We evaluate expressions derived from linear response theory applied to the generalized Smoluchowski equation and from a cluster expansion of the response. This leads to results obtained earlier by Batchelor for hard spheres and by Russel for more general pair interactions.  相似文献   

12.
Individual single-walled carbon nanotubes (SWNTs) in aqueous suspension are visualized directly by fluorescence video microscopy. The fluorescent tagging is simple, biocompatible, and does not modify the SWNTs. The dynamics of individual SWNTs in water are observed and quantified for the first time. We measure the confined rotational diffusion coefficient and find it in reasonable agreement with predictions based on confined diffusion of dilute Brownian rods. We determine the critical concentration at which SWNTs in suspensions start interacting. By analyzing the fluctuating shape of SWNTs in the 3 to 5 microm range, we determine that their persistence length ranges between 32 and 174 microm, in agreement with theoretical estimates; thus, commonly available SWNTs in liquids can be considered as rigid Brownian rods in the absence of imposed external fields or self-attractive forces.  相似文献   

13.
Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing translational and rotational diffusion. We find that the measured increase of the sedimentation length is coupled to a partial alignment of the suspension with the mean swimming direction oriented against the gravitational field. We suggest realistic parameter values to observe this polar order. Furthermore, we find that the dynamics of the active suspension can be derived from a generalized free energy functional.  相似文献   

14.
A mean field approach is used to estimate the energy dissipation during the homogeneous sedimentation or the particulate fluidization of non Brownian hard spheres in a concentrated suspension of infinite extent. Depending on inertial screening and the range of the hydrodynamic interactions, the effective buoyancy force is determined either from the average suspension density in a Stokes flow or from the fluid density in the turbulent flow regime. An energy balance then yields a settling or fluidization law depending on the particle Reynolds number in reasonable agreement with the Richardson and Zaki correlation and recent experimental results for particle settling or fluidization. We further estimate the energy dissipation in the turbulent boundary layers around the particles to precise the Reynolds number dependence of the hindered settling function in the intermediate flow regime. Received 22 February 1999 and Received in final form 14 June 1999  相似文献   

15.
We report first results of measurements by low-coherence Doppler interferometry of the path-length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach-Zehnder interferometer with multimode graded-index fibers and a superluminescent diode as the light source. The path-length distribution is obtained by recording of the heterodyne fluctuations that arise from the Brownian motion of particles in an Intralipid suspension as a function of the optical path length. The experimental path-length distribution is in good agreement with predictions of Monte Carlo simulations. In the heterodyne spectrum, an increase of the mean Doppler frequency with path length is observed.  相似文献   

16.
We present a model based on effective pair interactions to describe the arrangement of sodium polystyrene sulfonate chains in suspension. The potential functions are obtained from the analysis of all-atom simulations and they are the main ingredient of a Brownian dynamics simulation. The resulting configurations are used to reconstruct the corresponding scattering intensity spectra that have the main features of experimental patterns. This coarse-grained model in conjunction with the reconstruction scheme allows us to gain some insights on the structural properties of a polyelectrolyte in solution.  相似文献   

17.
Akira Satoh 《Molecular physics》2013,111(18):2301-2311
We have developed a lattice Boltzmann method based on fluctuation hydrodynamics that is applicable to the flow problem of a particle suspension. In this method, we have introduced the viscosity-modifying method, rather than the velocity-scaling method, in which a modified viscosity is used for generating random forces in lattice Boltzmann simulations. The viscosity-modifying method is found to be applicable to the simulation of a magnetic particle suspension. We have applied this method to the two-dimensional Poiseuille flow of a magnetic suspension between two parallel walls in order to investigate the behavior of magnetic particles in a non-uniform applied magnetic field. From the results of the snapshots, the pair correlation function between the magnetic pole and the magnetic particles and the averaged local particle velocity and magnetization distributions, it was observed that the behavior of the magnetic particles changes significantly depending upon which factor dominates the phenomenon in the balance between the magnetic particle–particle interaction, the non-uniform applied magnetic field and the translational and rotational Brownian motion.  相似文献   

18.
A major challenge to achieving positional control of fluid borne submicron sized objects is regulating their Brownian fluctuations. We present a magnetic-field-based trap that regulates the thermal fluctuations of superparamagnetic beads in suspension. Local domain-wall fields originating from patterned magnetic wires, whose strength and profile are tuned by weak external fields, enable the bead trajectories within the trap to be managed and easily varied between strong confinements and delocalized spatial excursions that are described remarkably well by simulations.  相似文献   

19.
Summary Dynamic light scattering can be a useful tool to determine the confinement of Brownian particles whose motion is restricted to dimensions comparable to the wavelength of the light. The theoretical form of the correlation function of the electric field scattered from such trapped particles has been derived and compared with the signal obtained both in a simulated experiment and in a real experiment where the particles are trapped in a glass wedge. This new result can be of relevance for particles trapped in various media such as a porous (transparent) media, a gel, a suspension of lamellar phases or even a concentrated colloidal suspension where a particle is ?trapped? by its neighbours. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

20.
文中以有效介质近似理论为基础,考虑了纳米颗粒在基液中强烈的B rown ian运动对强化传热的作用和纳米颗粒的表面吸附液体层、纳米颗粒的粒径和体积分数对纳米悬浮液有效导热系数的影响,建立了预测纳米悬浮液有效导热系数的模型,通过对纳米CuO-去离子水溶液的验证,发现该模型比几种经典模型具有更高的精度,因此具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号