首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show that the spin-Hall conductivity in insulators is related to a magnetic susceptibility representing the strength of the spin-orbit coupling. We use this relationship as a guiding principle to search real materials showing quantum spin-Hall effect. As a result, we theoretically predict that two-dimensional bismuth will show the quantum spin-Hall effect, both by calculating the helical edge states, and by showing the nontriviality of the Z2 topological number, and propose possible experiments.  相似文献   

2.
We lay out an experiment to realize time-reversal invariant topological insulators in alkali atomic gases. We introduce an original method to synthesize a gauge field in the near field of an atom chip, which effectively mimics the effects of spin-orbit coupling and produces quantum spin-Hall states. We also propose a feasible scheme to engineer sharp boundaries where the hallmark edge states are localized. Our multiband system has a large parameter space exhibiting a variety of quantum phase transitions between topological and normal insulating phases. Because of their remarkable versatility, cold-atom systems are ideally suited to realize topological states of matter and drive the development of topological quantum computing.  相似文献   

3.
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect, which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal). By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate, it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one). The theoretical results obtained are in good agreement with recent relevant experimental results.  相似文献   

4.
Using the four-terminal Landauer-Bu ttiker formula and Green's function approach, we calculate numerically the spin-Hall conductance in a two-dimensional junction system with the Rashba spin-orbit (SO) coupling and disorder. We find that the spin-Hall conductance can be much greater or smaller than the universal value e/8pi, depending on the magnitude of the SO coupling, the electron Fermi energy, and the disorder strength. The spin-Hall conductance does not vanish with increasing sample size for a wide range of disorder strength. Our numerical calculation reveals that a nonzero SO coupling can induce electron delocalization for disorder strength smaller than a critical value, and the nonvanishing spin-Hall effect appears mainly in the metallic regime.  相似文献   

5.
颜玉珍  胡梁宾 《中国物理 B》2010,19(4):47203-047203
We study theoretically the influence of spin--orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin--orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba two-dimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.  相似文献   

6.
We report theoretical investigations of the quantized spin-Hall conductance fluctuation of graphene in the presence of disorder. Two graphene models that exhibit the quantized spin-Hall effect (QSHE) are analyzed. Model I is with unitary symmetry under an external magnetic field B not = 0 but with a zero spin-orbit interaction, t(SO)=0. Model II is with symplectic symmetry where B=0 but t(SO) not = 0. The two models give exactly the same universal QSHE conductance fluctuation value 0.285+/-0.005e/4pi regardless of symmetry. We also examined a third model that exhibits QSHE but with quadratic dispersion and obtained the same results. Finally, all three models of QSHE have a one-sided log-normal distribution for spin-Hall conductance. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class.  相似文献   

7.
We present the first numerical studies of the disorder effect on the recently proposed intrinsic spin-Hall conductance in a three dimensional lattice Luttinger model. The results show that the spin-Hall conductance remains finite in a wide range of disorder strength, with large fluctuations. The disorder-configuration-averaged spin-Hall conductance monotonically decreases with the increase of disorder strength and vanishes before the Anderson localization takes place. The finite-size effect is also discussed.  相似文献   

8.
We experimentally show that exchange magnons can be detected by using a combination of spin pumping and the inverse spin-Hall effect proving its wavelength integrating capability down to the submicrometer scale. The magnons were injected in a ferrite yttrium iron garnet film by parametric pumping and the inverse spin-Hall effect voltage was detected in an attached Pt layer. The role of the density, wavelength, and spatial localization of the magnons for the spin pumping efficiency is revealed.  相似文献   

9.
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four-terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive, and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spin-orbit coupling tso but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number approximately 0.18e/4pi. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.  相似文献   

10.
We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U>U(c) both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves the single-particle signatures of the helical liquid intact.  相似文献   

11.
We show that two types of spin-orbit coupling in the 2 dimensional hole gas, with and without inversion symmetry breaking, contribute to the intrinsic spin-Hall effect. Furthermore, the vertex correction due to impurity scattering vanishes in both cases, in sharp contrast to the case of usual Rashba coupling in the electron band. Recently, the spin-Hall effect in a hole doped GaAs semiconductor has been observed experimentally by Wunderlich et al. [ Phys. Rev. Lett. 94, 047204 (2005).]. From the fact that the lifetime broadening is smaller than the spin splitting, and the fact impurity vertex corrections vanish in this system, we argue that the observed spin-Hall effect should be in the intrinsic regime.  相似文献   

12.
The phenomena of the spin-Hall effect, initially proposed over three decades ago in the context of asymmetric Mott skew scattering, was revived recently by the proposal of a possible intrinsic spin-Hall effect originating from a strongly spin-orbit coupled band structures. This new proposal has generated an extensive debate and controversy over the past 2 years. On August 2006 the first workshop on the spin-Hall effect was held at the Asian Pacific Center for Theoretical Physics. Its purpose was to bring together many of the leading groups in this field to resolve such issues and identify future challenges. We offer this short summary to clarify formerly controversial issues now settled and help refocus the research efforts in new and important avenues.  相似文献   

13.
A self-consistent treatment of the spin-Hall effect requires consideration of the spin-orbit coupling and electron-impurity scattering on equal footing. This is done here for the experimentally relevant case of a [110] GaAs quantum well [Sih, Nature Phys. 1, 31 (2005)]. Working within the framework of the exact linear response formalism we calculate the spin-Hall conductivity including the Dresselhaus linear and cubic terms in the band structure, as well as the electron-impurity scattering and electron-electron interaction to all orders. We show that the spin-Hall conductivity naturally separates into two contributions, skew-scattering and side-jump, and we propose an experiment to distinguish between them.  相似文献   

14.
We report a theoretic study on the inverse spin-Hall effect (ISHE) in a two-terminal nano-device that consists of a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (RSOC) and two ideal leads. Based on a two-site toy model and Keldysh Green's function method, we derive an analytic result of ISHE, which shows clearly that a nonzero transverse charge current stems from the combined effect of the RSOC, the spin bias, and its spin polarization direction in spin space. Our further numerical calculations in a larger system other than two-site lattice model demonstrate that the transverse charge current, dependent on the strength of the RSOC, the Fermi energy of the system, as well as the system size, can exhibit oscillating behavior and even reverse its sign due to Rashba spin precession. These properties may be helpful for eficient detection of the spin current (spin bias) by measuring the transverse charge current in a spin-orbital coupling system.  相似文献   

15.
We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of an external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by the Zeeman interaction, and do not involve a spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications.  相似文献   

16.
Extrapolation of small-cluster exact-diagonalization calculations is used to study the ground state phase diagram of the spinless one-dimensional Falicov-Kimball model at half filling. Our results show that the phase diagram has an extremely simple structure for the Coulomb interactionsU≥2. Here the ground states are the most homogeneous configurations (mhc) with the smallest periods. Valence transitions are discontinuous and only of the type insulator-insulator. In this region the finite size effects are negligible and thus the picture of valence transitions is definitive. ForU<2 the phase diagram exhibits a more complicated structure. Here we have specified a domain where the ground states are the mhc and a metallic domain where the ground states are mixtures of configurations with the empty configuration. The boundary between these two domains is the boundary of discontinuous insulator-metal transitions. Unlike the caseU≥2 the valence transitions are gradual in the weak coupling limit. This work was supported by the Slovak scientific grant agency VEGA, contract No. 4177/97.  相似文献   

17.
We show, both experimentally and theoretically, a novel route to obtain giant room temperature spin-Hall effect due to surface-assisted skew scattering. In the experiment, we report the spin-Hall effect in Pt-doped Au films with different thicknesses t(N). The giant spin-Hall angle γ(S)=0.12±0.04 is obtained for t(N)=10 nm at room temperature, while it is much smaller for the t(N)=20 nm sample. Combined ab initio and quantum Monte Carlo calculations for the skew scattering due to a Pt impurity show γ(S)?0.1 on the Au (111) surface, while it is small in bulk Au. The quantum Monte Carlo results show that the spin-orbit interaction of the Pt impurity on the Au (111) surface is enhanced, because the Pt 5d levels are lifted to the Fermi level due to the valence fluctuation. In addition, there are two spin-orbit interaction channels on the Au (111) surface, while only one in bulk Au.  相似文献   

18.
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic fourterminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Biittiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.  相似文献   

19.
We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.  相似文献   

20.
We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号