首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Position-dependent-mass systems are of great importance in many physical situations,such as the transport of charge carriers in semiconductors with non-uniform composition and in the theory of many-body interactions in condensed matter.Here we investigate,numerically and analytically,the phenomenon of fractional revivals in such systems,which is a generic characteristic manifested by the wave-packet evolution in bounded Hamiltonian systems.Identifying the fractional revivals using specific probe...  相似文献   

2.
It is shown that sum of information entropies in position and momentum space, quantifies the temporal information in wave packet dynamics of a dynamical system. Quantum fractional revivals are investigated on these bases in periodically driven Fermi-Ulam accelerator. It is observed that the entropic measure provides deeper insight of the wave packet dynamics for the long time evolution as compared with conventional autocorrelation function. It is shown that these revival times are not symmetric in driven situations and may lead to a random behavior.  相似文献   

3.
利用WKB近似和自关联函数方法,我们研究了一般幂指数中心势V(r)=γrk (-20)作用下波包的回归和部分回归.对于排斥势(γ>0, k>0), 势是一长程势,量子化能级结构中只有一个量子数,波包的回归结构和一维幂指数势的情况类似.这一结果表明能级结构相同的体系具有相同的波包回归结构.对于吸引势,能级结构中有两个量子数, 当 k取不同的值时,波包的回归结构不同.对于库仑吸引势,波包回归和部分回归出现;但是对于其它的k值, 经过一段时间后,波包出现坍塌.本文的研究对于探讨里德堡原子和分子中电子运动的经典极限提供了一个新的方法.  相似文献   

4.
利用WKB近似和自关联函数方法,我们研究了一般幂指数中心势V(r)=rk (-20)作用下波包的回归和部分回归。对于排斥势(>0, k>0), 势是一长程势,量子化能级结构中只有一个量子数,波包的回归结构和一维幂指数势的情况类似。这一结果表明能级结构相同的体系具有相同的波包回归结构。 对于吸引势,能级结构中有两个量子数, 当 k取不同的值时,波包的回归结构不同。对于库仑吸引势,波包回归和部分回归出现; 但是对于其它的k值, 经过一段时间后,波包出现坍塌。本文的研究对于探讨里德堡原子和分子中电子运动的经典极限提供了一个新的方法。  相似文献   

5.
Lasers can create rotational wave packets in gas-phase molecules which periodically revive as field-free, aligned distributions. We control the wave packet evolution with relatively weak laser pulses at fractional revivals which modify the phase between wave packet components. We demonstrate two phase control effects in oxygen: coherently switching revivals off and on, and doubling the revival frequency. When viewed as a quantum logic system, these effects correspond to a Hadamard and a T operation.  相似文献   

6.
We show (i) how the evolution of a wave packet created from an initial thermal ensemble can be controlled by manipulating interferences during the wave packet's fractional revivals and (ii) how the wave-packet evolution can be mapped onto the dynamics of a few-state system, where the number of states is determined by the amount of information one wants to track about the wave packet in the phase space. We illustrate our approach by (i) switching off and on field-free molecular axis alignment induced by a strong laser pulse and (ii) converting alignment into field-free orientation, starting with rotationally cold or hot systems.  相似文献   

7.
Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.  相似文献   

8.
Journal of Russian Laser Research - Wave-packet dynamics in bounded systems manifests quantum recurrences at different time scales, namely, classical periodicity, quantum revivals, and fractional...  相似文献   

9.
We explain quantum carpets in the position and momentum spaces woven by the self-interference of the de Broglie wave of an atom or an electron trapped in an infinitely deep potential well. The recurrence of self-similar structures in designs of these carpets mimics the phenomena of quantum revivals and fractional revivals. We identify fractional revivals of various order by means of these space–time and momentum–time interference patterns.  相似文献   

10.
Wave packets in a system governed by a Hamiltonian with a generic nonlinear spectrum typically exhibit both full and fractional revivals. It is shown that, by varying the parameters in the Hamiltonian cyclically with a period T and thus inducing suitable geometric phases in the states, fractional revivals can be eliminated at the relevant times T, 2T,... . Further, with the introduction of this time step T, the occurrence of near full revivals can be mapped onto that of Poincaré recurrences in an irrational rotation map of the circle. The distinctive recurrence statistics of the latter can thus serve as a clear signature of the dynamics of wave packet revivals.  相似文献   

11.
矩形弹子球中的量子波包分析(英文)   总被引:1,自引:0,他引:1  
利用波包分析量子力学体系的动力学行为在研究经典和量子的对应关系方面越来越成为一个非常重要的方法.利用高斯波包分析方法,我们计算了矩形弹子球体系的自关联函数,自关联函数的峰和经典周期轨道的周期符合的很好,这表明经典周期轨道的周期可以通过含时的量子波包方法产生.我们还讨论了矩形弹子球的波包回归和波包的部分回归,计算结果表明在每一个回归时间,波包出现精确的回归.对于动量为零的波包,初始位置在弹子球内部的特殊对称点处,出现一些时间比较短的附加的回归.  相似文献   

12.
We explain quantum revivals and fractional revivals in phase space of the Fermi?CUlam accelerator. We derive analytic expressions of the Wigner distribution function for the driven system describing quantum interferences in position and momentum space. We assume that the fractional revival times are nonrecurrent under certain conditions and display randomness in the occurrence of the phenomenon at these times.  相似文献   

13.
We study control of wave packets with a finite accuracy, approaching it as quantum information processing. For a given control resolution, we define the analogs of several quantum bits within the shape of a single wave packet. These bits are based on wave packet symmetries. Analogs of one- and two-bit gates can be implemented using only free wave packet evolution and coordinate-dependent ac Stark shifts applied at the moments of fractional revivals. As in quantum computation, the gates form a logarithmically small set of basis operations which can be used to approximate any unitary transformation desired for quantum control of the wave packet dynamics. Numerical examples show the application of this approach to control vibrational wave packet revivals.  相似文献   

14.
The various facets of the internal disorder of quantum systems can be described by means of the Rényi entropies of their single-particle probability density according to modern density functional theory and quantum information techniques. In this work, we first show the lower and upper bounds for the Rényi entropies of general and central-potential quantum systems, as well as the associated entropic uncertainty relations. Then, the Rényi entropies of multidimensional oscillator and hydrogenic-like systems are reviewed and explicitly determined for all bound stationary position and momentum states from first principles (i.e., in terms of the potential strength, the space dimensionality and the states’s hyperquantum numbers). This is possible because the associated wavefunctions can be expressed by means of hypergeometric orthogonal polynomials. Emphasis is placed on the most extreme, non-trivial cases corresponding to the highly excited Rydberg states, where the Rényi entropies can be amazingly obtained in a simple, compact, and transparent form. Powerful asymptotic approaches of approximation theory have been used when the polynomial’s degree or the weight-function parameter(s) of the Hermite, Laguerre, and Gegenbauer polynomials have large values. At present, these special states are being shown of increasing potential interest in quantum information and the associated quantum technologies, such as e.g., quantum key distribution, quantum computation, and quantum metrology.  相似文献   

15.
《Physics letters. A》1998,243(4):208-214
We present a theoretical analysis of revivals and fractional revivals of three-dimensional wave packets, which describe the coupled vibrational motion of phosphaethyne (HCP) in its ground electronic state. The wave packets studied are chosen to evolve along the periodic orbits, which quantize the states in the three fundamental progressions. The revival times Trev are found to depend strongly on the particular mode excited and on the mean excitation energy. Based on a semiclassical analysis, Trev is shown to be determined by the dependence of the period of the orbits on the classical action along them.  相似文献   

16.
Titus Sandu 《Physics letters. A》2009,373(31):2753-2759
Beyond the rotating-wave approximation, the dynamics of a quantum oscillator interacting strongly and off-resonantly with a two-level system exhibit beatings, whose period equals the revival time of the two-level system. On a longer time scale, the quantum oscillator shows collapses, revivals and fractional revivals, which are encountered in oscillator observables like the mean number of oscillator quanta and in the two-level inversion population. Also the scattered oscillator field shows doublets with symmetrically displaced peaks.  相似文献   

17.
This work introduces channel-supermodular entropies, a subset of quasi-concave entropies. Channel-supermodularity is a property shared by some of the most commonly used entropies in the literature, including Arimoto–Rényi conditional entropies (which include Shannon and min-entropy as special cases), k-tries entropies, and guessing entropy. Based on channel-supermodularity, new preorders for channels that strictly include degradedness and inclusion (or Shannon ordering) are defined, and these preorders are shown to provide a sufficient condition for the more-capable and capacity ordering, not only for Shannon entropy but also regarding analogous concepts for other entropy measures. The theory developed is then applied in the context of query anonymization. We introduce a greedy algorithm based on channel-supermodularity for query anonymization and prove its optimality, in terms of information leakage, for all symmetric channel-supermodular entropies.  相似文献   

18.
We experimentally demonstrate field-free, three-dimensional alignment (FF3DA) of polyatomic asymmetric top molecules. We achieve FF3DA in sulfur dioxide gas using two time-delayed, orthogonally polarized, nonresonant, femtosecond laser pulses. Our method avoids the use of rotational revivals and is therefore more robust to temperature. The alignment is probed using time-delayed coincidence Coulomb explosion imaging. FF3DA will be important for all molecular imaging, dynamics, or spectroscopy experiments for which random alignment leads to a loss of information.  相似文献   

19.
An exact analytic solution was obtained for the correlation function of the motion of a phase-modulated Gauss wave packet in an anharmonic potential. The solution is expressed through the theta-function with the parameters depending on both the potential and phase modulation of the initial wave packet. Changes in both linear and quadratic chirps result in an invariant correlation function time shift in a weakly anharmonic potential with the conservation of all the total and fractional revivals. At a strong potential anharmonicity, translational invariance with respect to a quadratic chirp is preserved in certain instances, whereas the dynamics of packets experiences qualitative changes depending on linear phase modulation. This approach can be used to qualitatively analyze intramolecular dynamics if the potential energy surface is not known exactly, which is especially useful for quantum control of large molecules, in particular, photochromes.  相似文献   

20.
We explore the quantum dynamical behavior of the Morse oscillator in the phase space using the Wigner function. For an initial wave packet excited with Gaussian probability distribution, we calculate the associated Wigner function and compute its time evolution. By calculating the marginal probabilities, we study the formation of quantum carpets both in the position space and in the momentum space. In addition, in view of these probabilities, we present the time evolution of the position and momentum expectation values. The structure of quantum carpets and the time-evolved expectation values mimic the emergence of quantum revivals and fractional revivals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号