首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of a strong-coupling approach, developed in previous works, we study the quasiparticle properties in an extended Hubbard model in presence of critical charge fluctuations near a stripe-quantum critical-point. We show that the quasiparticle dispersion has a kink along the diagonal Brillouin zone at the energy of the order 50 meV, for realistic values of the parameters. The energy and momentum distribution curves (EDC, MDC) along the diagonal are also analyzed. The results for the EDC derived quasiparticle width reveals an anomalous drop in the low-energy scattering rate at the same energy of the kink. This drop corresponds to a new energy scale in the system that reflects the interaction between the quasiparticles and the critical charge fluctuations. The results offer a possible interpretation of the ARPES and photoemission experiments on Bi2212.Received: 17 November 2003, Published online: 19 February 2004PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems  相似文献   

2.
We evaluate the charge and spin susceptibilities of the 2D attractive Hubbard model and we compare our results with Monte Carlo simulations on the same model. We discuss the possibility to include topological Kosterlitz-Thouless superconducting fluctuations in a standard perturbative approach substituting in the fluctuation propagator the Ginzburg-Landau correlation length with the Kosterlitz-Thouless correlation length. Received 30 June 1999  相似文献   

3.
An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular, we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the Néel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon asn<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.  相似文献   

4.
Using a combination of exact enumeration and the dynamical mean-field theory (DMFT) we study the drastic change of the spectral properties, obtained in the half-filled two-dimensional Hubbard model at a transition from an antiferromagnetic to a paramagnetic Mott insulator, and compare it with the results obtained using the quantum Monte Carlo method. The coherent hole (electron) quasiparticle spin-polaron subbands are gradually smeared out when the AF order disappears, either for increasing Coulomb repulsion U at fixed temperature T, or for increasing T at fixed U. Within the DMFT we present numerical evidence (a continuous disappearence of the order parameter) suggesting that the above magnetic transition is second order both in two and in three dimensions.Received: 20 November 2004, Published online: 9 April 2004PACS: 71.30. + h Metal-insulator transitions and other electronic transitions - 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 79.60.-i Photoemission and photoelectron spectraThis work is dedicated to Professor Ole Krogh Andersen on the occasion of his 60th birthday.  相似文献   

5.
The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 × 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 × 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t′) and third (t″) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level.  相似文献   

6.
The effect of Holstein electron-phonon interaction on a Hubbard model close to a Mott-Hubbard transition at half filling is investigated by means of dynamical mean-field theory. We observe a reduction of the effective mass that we interpret in terms of a reduced effective repulsion. When the repulsion is rescaled to take into account this effect, the quasiparticle low-energy features are unaffected by the electron-phonon interaction. Phonon features are only observed within the high-energy Hubbard bands. The lack of electron-phonon fingerprints in the quasiparticle physics can be explained interpreting the quasiparticle motion in terms of rare fast processes.  相似文献   

7.
8.
Dynamical properties of the spin and charge response functions in the doped two-dimensional Hubbard model are calculated by taking into account the drastic separation of the single-particle spectral function into the low-energy coherent and high-energy incoherent parts due to the strong Coulomb interaction. We show that this evolution of the electronic states is the origin of the broad and structureless feature in the charge response function. In the weak coupling regime the low-energy enhancement of the spin excitation is produced which can be explained within the random phase approximation. However, for the larger interaction close to the antiferromagnetic Stoner condition, the low-energy intensity of the spin excitation is suppressed. Received: 25 September 1997 / Revised: 19 December 1997 / Accepted: 9 January 1998  相似文献   

9.
We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U>U(c) both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves the single-particle signatures of the helical liquid intact.  相似文献   

10.
It is shown that spectral functions within the extended t-J model, evaluated using the finite-temperature diagonalization of small clusters, exhibit the high-energy kink in single-particle dispersion consistent with recent angle-resolved photoemission results on hole-doped cuprates. The kink and waterfall-like features persist up to large doping and to temperatures beyond J; hence, the origin can be generally attributed to strong correlations and incoherent hole propagation at large binding energies. In contrast, our analysis predicts that electron-doped cuprates do not exhibit these phenomena in photoemission.  相似文献   

11.
We study the two-dimensional Hubbard model with nonmagnetic Zn impurities modeled by binary diagonal disorder using quantum Monte Carlo within the dynamical cluster approximation. With increasing Zn content we find a strong suppression of d-wave superconductivity and an enhancement of antiferromagnetic spin correlations. T(c) vanishes linearly with Zn impurity concentration. The spin susceptibility changes from pseudogap to Curie-Weiss-like behavior indicating the existence of free magnetic moments in the Zn doped system. We interpret these results within the resonating-valence-bond picture.  相似文献   

12.
A self-consistent spectral density approach (SDA) is applied to the Hubbard model to investigate the possibility of spontaneous ferro- and antiferromagnetism. The starting point is a two-pole ansatz for the single-electron spectral density, the free parameter of which can be interpreted as energies and spectral weights of respective quasiparticle excitations. They are determined by fitting exactly calculated spectral moments. The resulting self-energy consists of a local and a non-local part. The higher correlation functions entering the spin-dependent local part can be expressed as functionals of the single-electron spectral density. Under certain conditions for the decisive model parameters (Coulomb interaction U, Bloch bandwidth W, band occupation n, temperature T) the local part of the self-energy gives rise to a spin-dependent band shift, thus allowing for spontaneous band magnetism. As a function of temperature, second-order phase transitions are found away from half-filling, but close to half-filling, the system exhibits a tendency towards first-order transitions. The non-local self-energy part is determined by use of proper two-particle spectral densities. Its main influence concerns a (possibly spin-dependent) narrowing of the quasiparticle bands with the tendency to stabilize magnetic solutions. The non-local self-energy part disappears in the limit of infinite dimensions. We present a full evaluation of the Hubbard model in terms of quasiparticle densities of states, quasiparticle dispersions, magnetic phase diagram, critical temperatures (Tc, TN) as well as spin and particle correlation functions. Special attention is focused on the non-locality of the electronic self-energy, for which some rigorous limiting cases are worked out.  相似文献   

13.
The quasiparticle self-energy and the dynamic spin and charge susceptibilities are calculated self-consistently in RPA for the two-dimensional Hubbard model with additional electron-phonon interaction. Vertex corrections lead to an enhancement of charge fluctuations and a suppression of spin fluctuations, thus increasing Tc. The resulting optical reflectivity in the normal and superconducting state is found to be in qualitative agreement with the experiment data on YBa2Cu3O7 for intermediate values of λph and U/t. We calculate also the photoemission intensity in the normal and superconducting state.  相似文献   

14.
We investigate the edge-state magnetism of graphene nanoribbons using projective quantum Monte Carlo simulations and a self-consistent mean-field approximation of the Hubbard model. The static magnetic correlations are found to be short ranged. Nevertheless, the correlation length increases with the width of the ribbon such that already for ribbons of moderate widths we observe a strong trend towards mean-field-type ferromagnetic correlations at a zigzag edge. These correlations are accompanied by a dominant low-energy peak in the local spectral function and we propose that this can be used to detect edge-state magnetism by scanning tunneling microscopy. The dynamic spin structure factor at the edge of a ribbon exhibits an approximately linearly dispersing collective magnonlike mode at low energies that decays into Stoner modes beyond the energy scale where it merges into the particle-hole continuum.  相似文献   

15.
We reinvestigate the sign problem in the two-dimensional Hubbard model using the projector ground state Quantum Monte Carlo scheme with Langevin dynamics. Our interest is mainly motivated by the question: what is the parameter space in which simulations may be performed with reliable results and how does the average sign scales with inverse temperature? In the parameter space in which one may omit the sign problem we have studied the ground state properties: momentum distribution and spin structure. We find an exponential decay of the average sign. At half filling, we find evidence for an antiferromagnetic insulating ground state. At off half band fillings, the antiferromagnetic state is destroyed leaving place to an incommensurate spin density state.  相似文献   

16.
Using quantum Monte Carlo simulations, results of a strong-coupling expansion, and Luttinger liquid theory, we determine quantitatively the ground state phase diagram of the one-dimensional extended Hubbard model with on-site and nearest-neighbor repulsions U and V. We show that spin frustration stabilizes a bond-ordered (dimerized) state for U approximately V/2 up to U/t approximately 9, where t is the nearest-neighbor hopping. The transition from the dimerized state to the staggered charge-density-wave state for large V/U is continuous for U < or approximately 5.5 and first order for higher U.  相似文献   

17.
Recent measurements of quasiparticles in hole-doped cuprates revealed highly unusual features: (i) the doping-independent Fermi velocity, (ii) two energy scales in the quasiparticle spectral function, and (iii) a suppression of the low-energy spectral weight near the zone center. We explain these important facts by a novel two-mode variational Monte Carlo (VMC) study of the t-J model, which resolves a long-standing issue of the sum rule for quasiparticle spectral weights in VMC studies. The electron-doped case is also discussed.  相似文献   

18.
We have calculated the spectral function and density of states of halffilled two-dimensional Hubbard model in the Hubbard-I approximation assuming an antiferromagnetic long range order at low temperature and compared results to the QMC data. It occurs that calculated functions are in a qualitative agreement with the QMC one. We have also shown that Neel ordered state dispersion has the similar form to the spin density wave one.  相似文献   

19.
We propose a fast multi-orbital impurity solver for dynamical mean field theory (DMFT). Our DMFT solver is based on the equations of motion (EOMs) for local Green's functions and is constructed by generalizing from the single-orbital case to the multi-orbital case with the inclusion of the inter-orbital hybridizations and applying a mean field approximation to the inter-orbital Coulomb interactions. The two-orbital Hubbard model is studied using this impurity solver within a large range of parameters. The Mott metal-insulator transition and the quasiparticle peak are well described. A comparison of the EOM method with the quantum Monte Carlo method is made for the two-orbital Hubbard model and good agreement is obtained. The developed method hence holds promise as a fast DMFT impurity solver in studies of strongly correlated systems.  相似文献   

20.
Dynamic cluster Monte Carlo calculations for the doped two-dimensional Hubbard model are used to study the irreducible particle-particle vertex responsible for dx2-y2 pairing in this model. This vertex increases with increasing momentum transfer and decreases when the energy transfer exceeds a scale associated with the Q=(pi, pi) spin susceptibility. Using an exact decomposition of this vertex into a fully irreducible two-fermion vertex and charge and magnetic exchange channels, the dominant part of the effective pairing interaction is found to come from the magnetic, spin S=1 exchange channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号