首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

3.
We theoretically study the electronic states in graphene ribbons which are strongly affected by the edge states, the peculiar non-bonding molecular orbitals localized along the zigzag edges of the ribbons. New kinds of edge localized electronic states with spin and charge polarizations are found in the mean field solutions of the extended Hubbard model with onsite and nearest-neighbor Coulomb repulsions. These novel states appear due to the interplay between the edge states and the Fermi instabilities. We also examine the competition between the charge polarized state and the spin polarized state to draw a phase diagram depending on Coulomb parameters. The results obtained by the mean field calculations with the extended Hubbard model modified to include Coulomb integrals provide useful insights to understand and functionalize the nanoscale materials.  相似文献   

4.
The two dimensional charge carriers in monolayer and bilayer graphene are described by massless and massive chiral Dirac Hamiltonians, respectively. These two-dimensional materials are predicted to exhibit a wide range of behavior, etc. However, graphene devices on a typical three-dimensional insulating substrates such as SiO2 are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. We have developed a novel technique for substrate engineering of graphene devices using layered dielectric materials to build graphene based vertical heterostructures. We employ hBN, an insulating isomorph of graphite, as a substrate and gate dielectric for graphene electronics. In this review, we describe the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal hBN substrates, using a mechanical transfer process. Graphene devices on hBN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO2. We use the enhanced mobility of electrons in hBN supported graphene to investigate the effects of electronic interactions. We find that interactions drive spontaneous breaking of the emergent SU(4) symmetry of the graphene Landau levels, leading to a variety of non-trivial integer and fractional quantum Hall states. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.  相似文献   

5.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

6.
Electronic states in nanographite ribbons with zigzag edges are studied using the extended Hubbard model with nearest neighbor Coulomb interactions. The electronic states with the opposite electric charges separated along both edges are analogous as nanocondensers. Therefore, electric capacitance, defined using a relation of polarizability, is calculated to examine nano-functionalities. We find that the behavior of the capacitance is widely different depending on whether the system is in the magnetic or charge polarized phases. In the magnetic phase, the capacitance is dominated by the presence of the edge states while the ribbon width is small. As the ribbon becomes wider, the capacitance remains with large magnitudes as the system develops into metallic zigzag nanotubes. It is proportional to the inverse of the width, when the system corresponds to the semiconducting nanotubes and the system is in the charge polarized phase also. The latter behavior could be understood by the presence of an energy gap for charge excitations. In the BN (BCN) nanotubes and ribbons, the electronic structure is always like that of semiconductors. The calculated capacitance is inversely proportional to the distance between the positive and negative electrodes.  相似文献   

7.
The present work deals with the analysis of the quasi-particle spectrum and the density of states of monolayer and bilayer (AB- and AA-stacked) graphene. The tight binding Hamiltonian containing nearest-neighbor and next-nearest neighbor hopping and onsite Coulomb interaction within two triangular sub-lattice approach for monolayer graphene, along-with the interlayer coupling parameter for bilayer graphene has been employed. The expressions of quasi-particle energies and the density of states (DOS) are obtained within mean-field Green’s function equations of motion approach. It is found that next-nearest-neighbour intralayer hopping introduce asymmetry in the electronic states above and below the zero point energy in monolayer and bilayer (AA- and AB-stacked) graphene. The behavior of electronic states in monolayer and bilayer graphene is different and highly influenced by interlayer coupling and Coulomb interaction. It has been pointed out that the interlayer coupling splits the quasi-particle peak in density of states while the Coulomb interaction suppresses the bilayer splitting and generates a gap at Fermi level in both AA- and AB-stacked bilayer graphene. The theoretically obtained quasi-particle energies and density of states in monolayer and bilayer (AA- and AB-stacked) graphene has been viewed in terms of recent ARPES and STM data on these systems.  相似文献   

8.
We consider bilayer graphene in the presence of spin-orbit coupling, in order to assess its behavior as a topological insulator. The first Chern number n for the energy bands of single-layer graphene and that for the energy bands of bilayer graphene are computed and compared. It is shown that for a given valley and spin, n for a Bernal-stacked bilayer is doubled with respect to that for the monolayer. This implies that this form of bilayer graphene will have twice as many edge states as single-layer graphene, which we confirm with numerical calculations and analytically in the case of an armchair terminated surface. Bernal-stacked bilayer graphene is a weak topological insulator, whose surface spectrum is susceptible to gap opening under spin-mixing perturbations. We assess the stability of the associated topological bulk state of bilayer graphene under various perturbations. In contrast, we show that AA-stacked bilayer graphene is not a topological insulator unless the spin-orbit coupling is bigger than the interlayer hopping. Finally, we consider an intermediate situation in which only one of the two layers has spin-orbit coupling, and find that although individual valleys have non-trivial Chern numbers for the case of Bernal stacking, the spectrum as a whole is not gapped, so the system is not a topological insulator.  相似文献   

9.
Bilayer graphene has attracted considerable interest due to the important role played by many-body effects, particularly at low energies. Here we report local compressibility measurements of a suspended graphene bilayer. We find that the energy gaps at filling factors ν= ± 4 do not vanish at low fields, but instead merge into an incompressible region near the charge neutrality point at zero electric and magnetic field. These results indicate the existence of a zero-field ordered state and are consistent with the formation of either an anomalous quantum Hall state or a nematic phase with broken rotational symmetry. At higher fields, we measure the intrinsic energy gaps of broken-symmetry states at ν=0, ± 1, and ± 2, and find that they scale linearly with magnetic field, yet another manifestation of the strong Coulomb interactions in bilayer graphene.  相似文献   

10.
We investigate the theoretically combined effect of spin-orbit interactions and Coulomb interaction on the ground state and transport property of a quantum wire oriented along different crystallographic directions in the (110) plane. We find that the electron’s ground state exhibits phase transition among spin density wave, charge density wave, singlet superconductivity and metamagnetism, which can be controlled by changing the crystallographic orientation, the strengths of the spin-orbit interactions and the Coulomb interaction. The ac conductance exhibits a significant anisotropic behavior and a out-of-plane spin polarization which can be tuned by an in-plane electric field.  相似文献   

11.
We investigate the effect of the laser field on the polarization fluctuation of excitons in graphene ribbons. In order to calculate the fluctuation, we develop a bosonization method to deal with the electron-hole system. Our results show that the polarization fluctuation may be controlled by adjusting the strength and frequency of the laser field. The insulating armchair graphene ribbons may be divided into two types according to the width-dependences of the excitonic polarization fluctuation.  相似文献   

12.
Superconducting properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Metallic single wall carbon nanotubes have attracted much interest as 1D quantum wires combining a low carrier density and a high mobility. It was believed for a long time that low temperature transport was exclusively dominated by the existence of unscreened Coulomb interactions leading to an insulating behavior at low temperature. However experiments have also shown evidence of superconductivity in carbon nanotubes. We distinguish two fundamentally different physical situations. When carbon nanotubes are connected to superconducting electrodes, they exhibit proximity induced superconductivity with supercurrents which strongly depend on the transmission of the electrodes. On the other hand intrinsic superconductivity was also observed in suspended ropes of carbon nanotubes and recently in doped individual tubes. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsion at low temperature, and enables investigation of superconductivity in a 1D limit never explored before. To cite this article: M. Ferrier et al., C. R. Physique 10 (2009).  相似文献   

13.
We argue that the unscreened Coulomb interaction in graphene provides a positive, universal, and logarithmic correction to scaling of zero-temperature conductivity with frequency. The combined effect of the disorder due to wrinkling of the graphene sheet and the long-range electron-electron interactions is a finite positive contribution to the dc conductivity. This contribution is disorder strength dependent and thus nonuniversal. The low-energy behavior of such a system is governed by the line of fixed points at which both the interaction and disorder are finite, and the density of states is exactly linear. An estimate of the typical random vector potential representing ripples in graphene brings the theoretical value of the minimal conductivity into the vicinity of 4e2/h.  相似文献   

14.
We consider intrinsic contributions to the spin Hall and spin Nernst effects in a bilayer graphene. The relevant electronic spectrum is obtained from the tight binding Hamiltonian, which also includes the intrinsic spin-orbit interaction. The corresponding spin Hall and spin Nernst conductivities are compared with those obtained from effective low-energy k ?p and reduced Hamiltonians, which are appropriate for states in the vicinity of the Fermi level of a neutral bilayer graphene. Both conductivities are determined within the linear response theory and Green function formalism. The influence of an external voltage between the two atomic sheets is also considered. The results reveal a transition from the topological spin Hall insulator phase at low voltages to conventional insulator phase at larger voltages.  相似文献   

15.
《Physics letters. A》2020,384(29):126777
We investigate Coulomb bare interactions in 4-layer graphene systems, taking into account the inhomogeneity of dielectric environment. By solving Poisson equation in momentum space, 16 elements of Coulomb potential tensor have been formed with analytical expressions. The formulae illustrate that Coulomb bare interactions in inhomogeneous 4-layer graphene system differ noticeably from those in homogeneous one. Nevertheless, both intra- and interlayer Coulomb potentials become independent with dielectric constants of contacting media, but they are decided by those of dielectric layer surrounding the system in long wavelength approximation. Besides, numerical results demonstrate that Coulomb bare interactions decrease considerably with the increase in carrier density in graphene sheets as well as their separated distance. In all investigations, the inhomogeneity of dielectric background should not be neglected for improvement in the model.  相似文献   

16.
We report two experiments on graphene nanostructures. The first was performed on a graphene nanoribbon, where the nature of electronic transport was investigated in detail. Electrons or holes are found to localize in pockets of the potential along the ribbon. Transport is governed by the joint action of localization and Coulomb interaction. The temperature-dependence of the conductance shows activated behavior at temperatures above a few Kelvin. The activation energy retraces the edges of Coulomb blockade diamonds found in nonlinear transport. In the second experiment the metallic tip of a low-temperature scanning force microscope was scanned above a graphene quantum dot. In addition to the familiar Coulomb blockade fringes, localized states are detected forming in the constrictions connecting the dot to source and drain.  相似文献   

17.
Using the dynamical mean field theory it is shown that interorbital Coulomb interactions in nonisotropic multiorbital materials give rise to a single Mott transition. Nevertheless, narrow and wide subbands exhibit different excitation spectra in the metallic and insulating phases. The close analogy between "multigap" insulating behavior and multigap superconductivity is pointed out.  相似文献   

18.
We analyze the scattering from one-dimensional defects in intrinsic graphene. The Coulomb repulsion between electrons is found to be able to induce singularities of such scattering at zero temperature as in one-dimensional conductors. In striking contrast to electrons in one space dimension, however, repulsive interactions here can enhance transport. We present explicit calculations for the scattering from vector potentials that appear when strips of the material are under strain. There the predicted effects are exponentially large for strong scatterers.  相似文献   

19.
We discuss the notions of spin-orbital polarization and ordering in paramagnetic materials, and address their consequences in transition-metal oxides. Extending the combined density functional and dynamical mean field theory scheme to the case of materials with large spin-orbit interactions, we investigate the electronic excitations of the paramagnetic phases of Sr(2)IrO(4) and Sr(2)RhO(4). We show that the interplay of spin-orbit interactions, structural distortions and Coulomb interactions suppresses spin-orbital fluctuations. As a result, the room temperature phase of Sr(2)IrO(4) is a paramagnetic spin-orbitally ordered Mott insulator. In Sr(2)RhO(4), the effective spin-orbital degeneracy is reduced, but the material remains metallic, due to both, smaller spin-orbit and smaller Coulomb interactions. The corresponding spectra are in excellent agreement with photoemission data. Finally, we make predictions for the spectra of paramagnetic Sr(2)IrO(4).  相似文献   

20.
An optical study of NdNiO(3) ultrathin films with insulating and metallic ground states reveals new aspects of the insulator-to-metal transition that point to Mott physics as the driving force. In contrast with the behavior of charge-ordered systems, we find that the emergence of the Drude resonance across the transition is linked to a spectral weight transfer over an energy range of the order of the Coulomb repulsion U, as the energy gap is filled with states instead of closing continuously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号