首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Images directly visualizing the spatial spin-diffusion process are reported. The measurements were performed using a magnetic resonance force microscope. The field gradient associated with the force-detection experiment is large enough to affect the spin dynamics and a modified kinetics of the spin-diffusion process is observed. The effects of the gradient were compensated for by a pulse scheme and a pure Zeeman diffusion rate constant of D=(6.2+/-0.7)x10{-12} cm{2}/s in CaF2 was observed.  相似文献   

2.
Temperature dependence of spin relaxation process in a Cu wire has been studied by means of nonlocal spin-valve measurements. The spin-diffusion length of the Cu wire is found to take maximum at the characteristic temperature, below which the spin-diffusion length is reduced. The mechanism of the reduction can be explained by considering the spin-flip scattering due to the oxidized surface of the Cu wire. The thickness dependence of the characteristic temperature supports the interpretation with the surface oxidation.  相似文献   

3.
A method is described for investigating local proton “spin diffusion” by means of a 13C spin probe. The procedure does not require spectral resolution of proton resonance lines and can be applied in the laboratory frame of reference as well as in the rotating frame. Experimental results are presented for a static single crystal of ferrocene and for a powder sample under magic-angle spinning. The spin-diffusion rate constant is found to be proportional to the spinning speed in the range from 1 to 8 kHz.  相似文献   

4.
Hirsch [Phys. Rev. Lett. 83, 1834 (1999)] recently proposed a spin Hall effect based on the anomalous scattering mechanism in the absence of spin-flip scattering. Since the anomalous scattering causes both anomalous currents and a finite spin-diffusion length, we derive the spin Hall effect in the presence of spin diffusion from a semiclassical Boltzmann equation. When the formulation is applied to certain metals and semiconductors, the magnitude of the spin Hall voltage due to the spin accumulation is found to be much larger than that of magnetic multilayers. An experiment is proposed to measure this spin Hall effect.  相似文献   

5.
Achieving high spectral resolution is an important prerequisite for the application of solid-state NMR to biological molecules. Higher spectral resolution allows to resolve a larger number of resonances and leads to higher sensitivity. Among other things, heteronuclear spin decoupling is one of the important factors which determine the resolution of a spectrum. The process of heteronuclear spin decoupling under magic-angle sample spinning is analyzed in detail. Continuous-wave RF irradiation leads only in a zeroth-order approximation to a full decoupling of heteronuclear spin systems in solids under magic-angle spinning (MAS). In a higher-order approximation, a cross-term between the dipolar-coupling tensor and the chemical-shielding tensor is reintroduced, providing a scaled coupling term between the heteronuclear spins. In strongly coupled spin systems this second-order recoupling term is partially averaged out by the proton spin-diffusion process, which leads to exchange-type narrowing of the line by proton spin flips. This process can be described by a spin-diffusion type superoperator, allowing the efficient simulation of strongly coupled spin systems under heteronuclear spin decoupling. Low-power continuous-wave decoupling at fast MAS frequencies offers an alternative to high-power irradiation by reversing the order of the averaging processes. At fast MAS frequencies low-power continuous-wave decoupling leads to significantly narrower lines than high-power continuous-wave decoupling while at the same time reducing the power dissipated in the sample by several orders of magnitude. The best decoupling is achieved by multiple-pulse sequences at high RF fields and under fast MAS. Two such sequences, two-pulse phase-modulated decoupling (TPPM) and X-inverse-X decoupling (XiX), are discussed and their properties analyzed and compared.  相似文献   

6.
The lateral current-induced spin polarization in InGaN/GaN superlattices (SLs) without an applied magnetic field is reported. The fact that the sign of the nonequilibrium spin changes as the current reverses and is opposite for the two edges provides a clear signature for the spin Hall effect. In addition, it is discovered that the spin Hall effect can be strongly manipulated by the internal strains. A theoretical work has also been developed to understand the observed strain-induced spin polarization. Our result paves an alternative way for the generation of spin polarized current.  相似文献   

7.
A study was made of the effect of an rf field on spin diffusion. The interaction of spins with the rf field is described quantum mechanically. It is shown that the effect of the rf field on the system of spins can, in some approximation, be interpreted as the effect of a change in the Larmor frequency of the spin and a decrease in the magnitude of the dipole-dipole interaction between spins. These conclusions were obtained on the basis of a unitary transformation which eliminates the explicit form of the spin-photon interaction operator in the Hamiltonian of the system considered. An expression is derived for the spin-diffusion coefficient under saturation. The presence of the rf field results in a decrease in the diffusion coefficient.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 7–11, September, 1979.  相似文献   

8.
In off-resonance rotating-frame Overhauser spectroscopy (OFF-ROESY), spin-diffusion effects can be suppressed in selected spectral regions by doubly-selective inversion of the magnetization in the middle of the cross-relaxation interval. The resulting “quenching of undesirable indirect external trouble in off-resonance rotating-frame Overhauser effect spectroscopy” (QUIET-OFF-ROESY) experiment yields direct information about cross-relaxation rates between selected pairs of spins, as if the two-spin subsystems were isolated from their surroundings. When the cross-relaxation rates of a macromolecule are observed under spin-locked conditions with an effective field tilted by an angle 35.3° < 6 < 90° with respect to thez-axis of the rotating frame, the intensity of cross-peaks may be increased if contributions due to spin diffusion are suppressed. Applications to a desoxyribonucleic acid dodecamer demonstrate that the precision of the determination of internuclear distances can be significantly improved if spin diffusion is quenched.  相似文献   

9.
The spin dynamics of dilute paramagnetic impurities embedded in a semiconductor GaAs channel of a conventional lateral spin valve has been investigated. It is observed that the electron spin of paramagnetic Mn atoms can be polarized electrically when driven by a spin valve in the antiparallel configuration. The transient current through the MnAs/GaAs/MnAs spin valve bears the signature of the underlying spin dynamics driven by the exchange interaction between the conduction band electrons in GaAs and the localized Mn electron spins. The time constant for this interaction is observed to be dependent on temperature and is estimated to be 80 ns at 15 K.  相似文献   

10.
Reversible spin Hall effect comprising the direct and inverse spin Hall effects was electrically detected at room temperature. A platinum wire with a strong spin-orbit interaction is used not only as a spin current absorber but also as a spin-current source in the specially designed lateral structure. The obtained spin Hall conductivities are 2.4 x 10(4) (Omega m)(-1) at room temperature, 10(4) times larger than the previously reported values of semiconductor systems. Spin Hall conductivities obtained from both the direct and inverse spin Hall effects are experimentally confirmed to be the same, demonstrating the Onsager reciprocal relations between spin and charge currents.  相似文献   

11.
We develop a gauge theory for diffusive and precessional spin dynamics in a two-dimensional electron gas. Our approach reveals a direct connection between the absence of the equilibrium spin current and a strong anisotropy in the spin relaxation: both effects arise if spin-orbit coupling is reduced to a pure gauge SU(2) field. In this case, the spin-orbit coupling can be removed by a gauge transformation in the form of a local SU(2) spin rotation. The resulting spin dynamics is exactly described in terms of two kinetic coefficients: the spin diffusion and electron mobility. After the inverse transformation, full diffusive and precessional spin density dynamics, including the anisotropic spin relaxation, formation of stable spin structures, and spin precession induced by a macroscopic current are restored. Explicit solutions of the spin evolution equations are found for the initially uniform spin density and for stable, nonuniform structures. Our analysis demonstrates a universal relation between the spin relaxation rate and spin-diffusion coefficient.  相似文献   

12.
Nonexponential spin-lattice relaxation is often observed for rare spin nuclei in the solid state. Deviation from single-component decay may be amplified by the coupling of rare spin nuclei to paramagnetic centers. Nonexponential spin-lattice relaxation was observed in derivatized silica gels resins. This phenomenon was localized and enhanced when paramagnetic transition metal cations were bound to surface functional groups. A stretched exponential analysis method was determined to be robust in fitting nonexponential relaxation curves for silica gels both with and without bound paramagnetic ions. Spin-lattice relaxation rates (T1−1) for functional group nuclei increased as a function of percent surface coverage with metal ion. The magnitude of the relaxation rate increase was dependent upon internuclear distances from the paramagnetic center. At low surface coverages, a semi-random distribution of paramagnetic centers increased the degree of stretching of spin-lattice relaxation decays, as measured by decreases in the calculated stretching parameter β. At higher surface coverages, calculated β values reached a limiting value, indicating that while the spin-diffusion mechanism in metal-ex-changed silica gels is restricted, it is not completely diminished.  相似文献   

13.
Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.  相似文献   

14.
We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.  相似文献   

15.
Proton spin diffusion is widely used to determine domain sizes in heterogeneous organic solids. For an accurate analysis, spin diffusion coefficients are required. However, in most cases they are not directly measured, but instead derived from model systems. The effects of magic-angle spinning (MAS), mobility, or spin-lock fields on spin-diffusion coefficients have also been difficult to quantify. In this work, direct measurement of local (1)H spin-diffusion coefficients in any rigid polymer is achieved in experiments with heteronuclear dephasing of the (1)H magnetization, a mixing time for (1)H spin diffusion, and (13)C detection after cross-polarization. In the presence of (1)H homonuclear decoupling and (13)C 180 degrees-pulse recoupling, each (13)C spin dephases a significant number (3-20) of protons, depending on the dephasing time. For (13)C and other sufficiently dilute heteronuclei, the dephasing of the protons is described by simple spin-pair REDOR curves. As a result, every (13)C nucleus will "burn" a spherical hole of known diameter and profile into the proton magnetization distribution. (1)H spin diffusion into the hole during the mixing time can be monitored and simulated accurately for every resolved (13)C site, with the spin-diffusion coefficient as the only significant unknown parameter. By varying the dephasing time, holes with diameters of 0.4-0.8 nm can be burned into the proton magnetization profile and thus the dependence of the local spin-diffusion coefficients on the proton density or partial mobility can be explored. The effects of transverse or magic-angle spin-lock fields on spin diffusion can be quantified conveniently by this method. Analytical and numerical fits yield short-range spin-diffusion coefficients of 0.2-0.5 nm(2)/ms on the 0.5-nm scale, which is smaller than the value of 0.8 nm(2)/ms for organic solids previously measured on the 10-nm scale.  相似文献   

16.
Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].  相似文献   

17.
We have performed nonlocal spin injection into a nanoscale ferromagnetic particle configured in a lateral spin-valve structure to switch its magnetization only by spin current. The nonlocal spin injection aligns the magnetization of the particle parallel to the magnetization of the spin injector. The spin current responsible for switching is estimated from the experiment to be about 200 microA, which is reasonable compared with the values obtained for conventional pillar structures. Interestingly, the switching always occurs from antiparallel to parallel in the particle-injector magnetic configurations, where no opposite switching is observed. Possible reasons for this discrepancy are discussed.  相似文献   

18.
In this Letter an alternative mechanism is proposed for current-induced antisymmetric lateral edge spin accumulations in thin strips of ballistic two-dimensional electron gases with intrinsic spin-orbit coupling. In this mechanism, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a semiconductor strip is not due to a transverse spin current but originates from the combined action of the spin-orbit coupling, the boundary confinement on both lateral edges of the strip, and the time-reversal symmetry-breaking caused by the longitudinal charge current circulating through the strip. The results obtained in this Letter indicate that, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a thin strip of a spin-orbit coupled two-dimensional electronic system does not need to be associated necessarily with a transverse spin current in principle.  相似文献   

19.
While simulations are essential for interpretation of solid-state NMR experiments, large spin systems involved in e.g. spin-diffusion experiments and/or dynamic effects like chemical exchange pose great challenges for the numerical simulations, where we typically want to include effects of finite pulses and other external manipulations in the simulation. In this paper, these topics are reviewed and addressed by simple numerical simulations. The numerical simulations comprise a 2-spin simulation of (2)H two-site jumps and a 332-spin simulation of a CHHC experiment for a small protein.  相似文献   

20.
The Variable Moment of Inertia (VMI) model is proposed for the assignment of band head spin of super deformed (SD) rotational bands, which in turn is helpful in the spin prediction of SD bands. The moment of inertia and stiffness parameter (C), were calculated by fitting the proposed transition energies. The calculated transition energies are highly dependent on the prescribed spins. The calculated and observed transition energies agree well when an accurate band head spin (I 0) is assigned. The results are in good agreement with other theoretical results reported in literature. In this paper, we have reported the band head spin value 16 rotational band of super deformed Tl isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号