首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a tilted-field geometry, the effect of an in-plane magnetic field on the even denominator nu=5/2 fractional quantum Hall state is studied. The energy gap of the nu=5/2 state is found to collapse linearly with the in-plane magnetic field above approximately 0.5 T. In contrast, a strong enhancement of the gap is observed for the nu=7/3 state. The radically distinct tilted-field behavior between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read Pfaffian wave function for the 5/2 fractional quantum Hall effect.  相似文献   

2.
3.
Lu YM  Yu Y  Wang Z 《Physical review letters》2010,105(21):216801
A theory is developed for the paired even-denominator fractional quantum Hall states in the lowest Landau level. We show that electrons bind to quantized vortices to form composite fermions, interacting through an exact instantaneous interaction that favors chiral p-wave pairing. There are two canonically dual pairing gap functions related by the bosonic Laughlin wave function (Jastrow factor) due to the correlation holes. We find that the ground state is the Moore-Read Pfaffian in the long-wavelength limit for weak Coulomb interactions, a new Pfaffian with an oscillatory pairing function for intermediate interactions, and a Read-Rezayi composite Fermi liquid beyond a critical interaction strength. Our findings are consistent with recent experimental observations of the 1/2 and 1/4 fractional quantum Hall effects in asymmetric wide quantum wells.  相似文献   

4.
Here, we show that the incompressible Pfaffian state originally proposed for the 5/2 fractional quantum Hall states in conventional two-dimensional electron systems can actually be found in a bilayer graphene at one of the Landau levels. The properties and stability of the Pfaffian state at this special Landau level strongly depend on the magnetic field strength. The graphene system shows a transition from the incompressible to a compressible state with increasing magnetic field. At a finite magnetic field of ~10 T, the Pfaffian state in bilayer graphene becomes more stable than its counterpart in conventional electron systems.  相似文献   

5.
We study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state which is spatially separated from it by an integer quantum Hall state. Near a resonance, the physics at energy scales below the level spacing of the edge states of the dot is governed by a k-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction nu=2+k/(k+2) or its particle-hole conjugate at nu=2+2/(k+2). The k-channel Kondo model is channel isotropic even without fine-tuning in the former state; in the latter, it is generically channel anisotropic. In the special case of k=2, our results provide a new venue, realized in a mesoscopic context, to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction nu=5/2.  相似文献   

6.
《Nuclear Physics B》1997,506(3):685-694
We present an approach to the computation of the non-abelian statistics of quasiholes in quantum Hall states, such as the Pfaffian state, whose wavefunctions are related to the conformal blocks of minimal model conformal field theories. We use the Coulomb gas construction of these conformal field theories to formulate a plasma analogy for the quantum Hall states. A number of properties of the Pfaffian state follow immediately, including the Berry phases, which demonstrate the quasiholes' fractional charge, the abelian statistics of the two-quasihole state, and equal-time ground state correlation functions. The non-abelian statistics of multi-quasihole states follows from an additional assumption.  相似文献   

7.
It is shown, with the help of exact diagonalization studies on systems with up to 16 electrons, in the presence of up to two delta function impurities, that the Pfaffian model is not accurate for the actual quasiholes and quasiparticles of the 5/2 fractional quantum Hall effect. Implications for non-Abelian statistics are discussed.  相似文献   

8.
The emergence of half-integer filling-factor states, such as upsilon=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The upsilon=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted upsilon=5/2 state has a high spin polarization, which may have an impact on the spin transport through quantum dot devices.  相似文献   

9.
The Pfaffian phase of electrons in the proximity of a half-filled Landau level is understood to be a p+ipp+ip superconductor of composite fermions. We consider the properties of this paired quantum Hall phase when the pairing scale is small, i.e.   in the weak coupling, BCS, limit, where the coherence length is much larger than the charge screening length. We find that, as in a Type I superconductor, vortices attract so that, upon varying the magnetic field from its magic value at ν=5/2ν=5/2, the system exhibits Coulomb frustrated phase separation. We propose that the weakly and strongly coupled Pfaffian states exemplify a general dichotomy between Type I and Type II quantum Hall fluids.  相似文献   

10.
It is demonstrated that an understanding of the 5/2 fractional quantum Hall effect can be achieved within the composite fermion theory without appealing to the Pfaffian wave function. The residual interaction between composite fermions plays a crucial role in establishing incompressibility at this filling factor. This approach has the advantage of being amenable to systematic perturbative improvements, and produces ground as well as excited states. It, however, does not relate to non-Abelian statistics in any obvious manner.  相似文献   

11.
《Nuclear Physics B》1998,516(3):704-718
We present a low-energy effective field theory describing the universality class of the Pfaffian quantum Hall state. To arrive at this theory, we observe that the edge theory of the Pfaffian state of bosons at v = 1 is an SU(2)2 Kac-Moody algebra. It follows that the corresponding bulk effective field theory is an SU(2) Chem-Simons theory with coupling constant k = 2. The effective field theories for other Pfaffian states, such as the fermionic one at v = 1/2 are obtained by a flux-attachment procedure. We discuss the non-Abelian statistics of quasiparticles in the context of this effective field theory.  相似文献   

12.
13.
The competition between the Zeeman energy and the Rashba and Dresselhaus spin-orbit couplings is studied for fractional quantum Hall states by including correlation effects. A transition of the direction of the spin polarization is predicted at specific values of the Zeeman energy. We show that these values can be expressed in terms of the pair-correlation function, and thus provide information about the microscopic ground state. We examine the particular examples of the Laughlin wave functions and the 5/2-Pfaffian state. We also include effects of the nuclear bath.  相似文献   

14.
Magnetotransport measurements in a clean two-dimensional electron system confined to a wide GaAs quantum well reveal that, when the electrons occupy two electric subbands, the sequences of fractional quantum Hall states observed at high fillings (ν>2) are distinctly different from those of a single-subband system. Notably, when the Fermi energy lies in the ground state Landau level of either of the subbands, no quantum Hall states are seen at the even-denominator ν=5/2 and 7/2 fillings; instead, the observed states are at ν=[i+p/(2p±1)], where i=2, 3, 4 and p=1, 2, 3, and include several new states at ν=13/5, 17/5, 18/5, 25/7, and 14/3.  相似文献   

15.
We study the quantum Hall phases that appear in the dilute limit of rotating Bose-Einstein condensates. By exact diagonalization in a spherical geometry we obtain the ground state and low-lying excited states of a small number of bosons as a function of the filling fraction nu, the ratio of the number of bosons to the number of vortices. We show the occurrence of the Jain principal sequence of incompressible liquids for nu=2/3,3/4,4/3,5/4 in addition to the Laughlin state nu=1/2 as well as the Pfaffian state for nu=1. We give gap estimates by finite-size scaling of both charged and neutral excitations.  相似文献   

16.
We discuss the implications of approximate particle-hole symmetry in a half-filled Landau level in which a paired quantum Hall state forms. We note that the Pfaffian state is not particle-hole symmetric. Therefore, in the limit of vanishing Landau-level mixing, in which particle-hole transformation is an exact symmetry, the Pfaffian spontaneously breaks this symmetry. There is a particle-hole conjugate state, which we call the anti-Pfaffian, which is degenerate with the Pfaffian in this limit. We observe that strong Landau-level mixing should favor the Pfaffian, but it is an open problem which state is favored for the moderate Landau-level mixing which is present in experiments. We discuss the bulk and edge physics of the anti-Pfaffian. We analyze a simplified model in which transitions between analogs of the two states can be studied in detail. Finally, we discuss experimental implications.  相似文献   

17.
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.  相似文献   

18.
19.
20.
We find the finite width, i.e., the layer thickness, of experimental quasi-two-dimensional systems produces a physical environment sufficient to stabilize the Moore-Read Pfaffian state thought to describe the fractional quantum Hall effect at filling factor nu=5/2. This conclusion is based on exact calculations performed in the spherical and torus geometries, studying wave function overlap and ground state degeneracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号