首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A barrier with a tunable spin-valley dependent energy gap in silicene could be used as a spin and valley filter. Meanwhile, special resonant modes in unique quantum structure can act as energy filters. Hence we investigate valley and spin transport properties in the potential silicene quantum structures, i.e., single ferromagnetic barrier, single electromagnetic barrier and double electric barriers. Our quantum transport calculation indicates that quantum devices of high accuracy and efficiency (100% polarization), based on modulated silicene quantum structures, can be designed for valley, spin and energy filtering. These intriguing features are revealed by the spin, valley dependent line-type resonant peaks. In addition, line-type peaks in different structure depend on spin and valley diversely. The filter we proposed is controllable by electric gating.  相似文献   

2.
Taking into account the nonequilibrium spin accumulation, we apply a quantum-statistical approach to study the spin-polarized transport in a two-dimensional ferromagnet/semiconductor/ferromagnet (FM/SM/FM) double tunnel junction. It is found that the effective spin polarization is raised by increasing the barrier strength, resulting in an enhancement of the tunneling magnetoresistance (TMR). The nonequilibrium spin accumulation in SM may appear in both antiparallel and parallel alignments of magnetizations in two FMs, in particular for high bias voltages. The effects of spin accumulation and TMR on the bias voltage are discussed.  相似文献   

3.
We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and -GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed by a small transverse magnetic field, which depolarizes the spins in the semiconductor. The dependence of the electrical accumulation signal on magnetic field, bias current, and temperature is in good agreement with the predictions of a drift-diffusion model for spin-polarized transport.  相似文献   

4.
We describe a new means for all-electrical generation of spin polarization in semiconductors. In contrast with spin injection of electrons by tunneling through a reverse-biased Schottky barrier, we observe accumulation at the metal-semiconductor interface of forward-biased ferromagnetic Schottky diodes, which is consistent with a theory of spin-dependent reflection off the interface. Spatiotemporal Kerr microscopy is used to image the electron spin and the resulting dynamic nuclear polarization that arises from the nonequilibrium carrier polarization.  相似文献   

5.
《Physics letters. A》1996,223(6):470-474
Some specific features of the domain-wall (DW) solution for an antiferromagnetic chain of classical spins are discussed. It is shown that the Peierls-Nabarro barrier is absent. However, there is a specific spin barrier (i.e. the total spin of the chain depends on the position of the centre of the wall). The value of this barrier is calculated analytically. Existence of the spin barrier leads to the conclusion that the DW is unmovable for a discrete AFM chain, in contrast to the continuous case. The energy barrier is restored in the presence of an external magnetic field.  相似文献   

6.
We derive an expression for the spin current through a tunnel barrier in terms of many-body Green’s functions. The spin current has two possible contributions. One is associated with angular momentum transfer due to spin-polarized charge current crossing the junction. If there are magnetic moments on both sides of the tunnel junction, due to spin accumulation or ferromagnetic ordering, then there is a second contribution related to the exchange coupling between the moments.  相似文献   

7.
We explore the feasibility of a quantum self-correcting memory based on 3D spin Hamiltonians with topological quantum order in which thermal diffusion of topological defects is suppressed by macroscopic energy barriers. To this end we characterize the energy landscape of stabilizer code Hamiltonians with local bounded-strength interactions which have a topologically ordered ground state but do not have stringlike logical operators. We prove that any sequence of local errors mapping a ground state of such a Hamiltonian to an orthogonal ground state must cross an energy barrier growing at least as a logarithm of the lattice size. Our bound on the energy barrier is tight up to a constant factor for one particular 3D spin Hamiltonian.  相似文献   

8.
We report on experiments in which a spin-polarized current is injected from a GaMnAs ferromagnetic electrode into a GaAs layer through an AlAs barrier. The resulting spin polarization in GaAs is detected by measuring how the tunneling current, to a second GaMnAs ferromagnetic electrode, depends on the orientation of its magnetization. Our results can be accounted for by sequential tunneling with the nonrelaxed spin splitting of the chemical potential, that is, spin accumulation, in GaAs. We discuss the conditions on the hole spin relaxation time in GaAs that are required to obtain the large effects we observe.  相似文献   

9.
We study the superheavy nucleus 254No in the framework of the Hartree-Fock-Bogoliubov approximation with the finite-range density-dependent Gogny force, at zero and high angular momentum. The properties of the ground state rotational band and the fission barriers are discussed as a function of angular momentum. We found a two-humped barrier up to spin values of (30-40)Planck's over 2pi and a one-humped barrier for higher spins. We reproduce fairly well with the binding energy, the ground state deformation, the gamma-ray energies, and the bound on the fission barrier height measured at high spin.  相似文献   

10.
The spin transport signals from NiFe and Co into two-dimensional electron gas layers are measured for various thicknesses of transmission barriers. A stable and reproducible electrical detection of spin transport was obtained only when the barrier thickness is less than 10 nm. The typical interface resistance to observe spin signals in this experiment is about 0.5–250 Ω, which is a neither transparent nor a severe tunneling limit. The optimal interface resistance depends on the ferromagnetic materials, but severe tunneling barrier is not proper for fully electrical spin transport. Device size is also a critical factor to decide the proper range of interface resistance.  相似文献   

11.
Here we present the realization of a room temperature operating spin-valve transistor with huge magnetocurrent (MC=300%) at low fields. This spin-valve transistor employs hot-electron transport across a Ni81Fe19/Au/Co spin valve. Hot electrons are injected into the spin valve across a Si–Pt Schottky barrier. After traversing the spin valve, these hot electrons are collected using a second Schottky barrier (Si–Au), which provides energy and momentum selection. The collector current is found to be extremely sensitive to the spin-dependent scattering of hot electrons in the spin valve, and therefore on the applied magnetic field. We also illustrate the role of the collector diode characteristics in determining the magnetocurrent under collector bias.  相似文献   

12.
We present ab initio calculations for spin injection in Fe-ZnSe and Fe-GaAs(001) systems, with and without detection by a second Fe lead. We consider the case of hot injection, as well as the presence of a tunneling barrier at the interface. Our calculations are valid in the ballistic regime. We find that these systems can be very efficient spin filters, leading to current spin polarizations and magnetoresistance ratios very close to the ideal 100%.  相似文献   

13.
An asymptotically exact quantum mechanical calculation of the matrix elements for tunneling through an asymmetric barrier is combined with the two-state statistical model for decay out of superdeformed bands to determine the energy barrier (as a function of spin) separating the superdeformed and normal-deformed wells for several nuclei in the 190 and 150 mass regions. The spin-dependence of the barrier leading to sudden decay out is shown to be consistent with the decrease of a centrifugal barrier with decreasing angular momentum. Values of the barrier frequency in the two mass regions are predicted.  相似文献   

14.
白旭芳  迟锋  郑军  李亦楠 《中国物理 B》2012,21(7):77301-077301
We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of an electric bias and a magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads’ spin polarization and the asymmetry of the dot-lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.  相似文献   

15.
The entry distribution in angular momentum and excitation energy for the formation of 254No has been measured after the 208Pb(48Ca,2n) reaction at 215 and 219 MeV. This nucleus is populated up to spin 22Planck's over 2pi and excitation energy greater, similar6 MeV above the yrast line, with the half-maximum points of the energy distributions at approximately 5 MeV for spins between 12Planck's over 2pi and 22Planck's over 2pi. This suggests that the fission barrier is greater, similar5 MeV and that the shell-correction energy persists to high spin.  相似文献   

16.
Xing-Tao An 《Physics letters. A》2008,372(45):6790-6796
Spin polarization in parallel double quantum dots embedded in arms of Aharonov-Bohm interferometer is investigated. The spin-orbit interaction exists in quantum dots. We find that the spin polarization is quite large even with a weak spin-orbit interaction. The direction and the strength of the spin polarization are well controllable and manipulatable by simply varying the strength of spin-orbit interaction or the energy levels in quantum dots. Moreover, electron-electron interaction strengthens the spin accumulation when the energy levels of the two quantum dots are identical. As the energy levels are unequal, electron-electron interaction cannot increase the spin accumulation. It is worth mentioning that the device is free of a magnetic field or a ferromagnetic material and it can be easily realized with present technology.  相似文献   

17.
Simple models of semiconductor-based double barrier resonant tunneling structures predict a large accumulation of charge carriers in the structure. These carriers can be excited optically from one subband to another generating photocurrent. In this work we have investigated the photo-induced current due to intersubband excitation in double barrier structures. We have found that the origin of the photocurrent is accumulation of quantized carriers in the emitter-barrier junction of the structure, rather than accumulation of carriers in the double barrier quantum well. This photon assisted tunneling process in double barrier structures may be used for infrared detection.  相似文献   

18.
The nonstationary Schrödinger equation is solved numerically by the Cayley method for wave packets that are formed from surface states on the surface of topological insulators and are scattered by a potential barrier, including a barrier with magnetization. The transmission coefficient and spin density distributions are calculated. Expressions are found for the static transmission coefficient through a barrier with the use of the plane-wave approximation and its generalization for wave packets. It is shown that the two-dimensional nature of wave packets leads to noticeable differences in the behavior of the transmission coefficient compared to that in the plane-wave scattering problem. For instance, two-dimensional packets exhibit a significant suppression of Klein tunneling in some energy regions. The results obtained show that the tunneling and spin density of localized wave-packet-type electronic states in structures based on topological insulators can be affected through potential barriers.  相似文献   

19.
磁台阶势垒结构中二维电子气的自旋极化输运   总被引:1,自引:0,他引:1       下载免费PDF全文
运用散射矩阵方法,研究了台阶磁势垒量子结构中二维电子气的隧穿输运性质.结果表明:在零偏压下,电子传输概率的自旋极化曲线随入射能量的增加而振荡衰减;随着磁台阶数的增加,电子传输概率的自旋极化度最大值减小,同时电子传输概率的自旋极化度振荡衰减也越来越慢;随着磁台阶的总宽度增加,电子传输概率的自旋极化曲线出现更明显的振荡,电子隧穿磁台阶势垒表现出明显的量子尺寸效应;在偏置电压的作用下,电子传输概率的自旋极化度在宽广的入射能量区出现明显的振荡增大,电子隧穿磁台阶势垒表现出更明显的自旋过滤效应. 关键词: 磁台阶势垒 自旋极化 自旋过滤  相似文献   

20.
The prediction of intrinsic spin Hall currents by Murakami et al. and Sinova et al. raised many questions about methods of detection and the effect of disorder. We focus on a contact between a Rashba-type spin-orbit coupled region with a normal two-dimensional electron gas and show that the spin Hall currents, though vanishing in the bulk of the sample, can be recovered from the edges. We also show that the current-induced spin accumulation in the spin-orbit coupled system diffuses into the normal region and contributes to the spin current in the leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号