首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied interacting and noninteracting quantum degenerate Fermi gases in a three-dimensional optical lattice. We directly image the Fermi surface of the atoms in the lattice by turning off the optical lattice adiabatically. Because of the confining potential, gradual filling of the lattice transforms the system from a normal state into a band insulator. The dynamics of the transition from a band insulator to a normal state is studied, and the time scale is measured to be an order of magnitude larger than the tunneling time in the lattice. Using a Feshbach resonance, we increase the interaction between atoms in two different spin states and dynamically induce a coupling between the lowest energy bands. We observe a shift of this coupling with respect to the Feshbach resonance in free space which is anticipated for strongly confined atoms.  相似文献   

2.
Broadband surface phonon wave packets on a phononic crystal made up of a microstructured line pattern are tracked in two dimensions and in real time with an ultrafast optical technique. The eigenmode distribution and the 2D acoustic band structure are obtained from spatiotemporal Fourier transforms of the data up to 1 GHz. We find stop bands at the zone boundaries for both leaky-longitudinal and Rayleigh waves, and show how the structure of individual acoustic eigenmodes in k space depends on Bloch harmonics and on mode coupling.  相似文献   

3.
Based on the Keldysh formalism, we derive an effective Boltzmann equation for a quasiparticle constrained within a particular Fermi surface in an interacting Fermi liquid. This provides a many-body derivation of Berry curvatures in electron dynamics with spin-orbit coupling, which has received much attention in recent years in noninteracting models. As is well known, the Berry curvature in momentum space modifies na?ve band dynamics via an "artificial magnetic field" in momentum space. Our Fermi liquid formulation completes the reinvention of modified band dynamics by introducing in addition an artificial electric field, related to Berry curvature in frequency and momentum space. We show explicitly how the artificial electric field affects the renormalization factor and transverse conductivity of interacting U(1) Fermi liquids with nondegenerate bands.  相似文献   

4.
《中国物理 B》2021,30(6):64204-064204
The Jaynes–Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes–Cummings model beyond the rotating-wave approximation. Treating the counter-rotating terms as periodic drivings, we solve the model in the extended Floquet space. It is found that the full energy spectrum folded in the quasi-energy bands can be described by an effective Hamiltonian derived in the highfrequency regime. In contrast to the Z_2 symmetry of the original model, the effective Hamiltonian bears an enlarged U(1)symmetry with a unique photon-dependent atom-light detuning and coupling strength. We further analyze the energy spectrum, eigenstate fidelity and mean photon number of the resultant polaritons, which are shown to be in accordance with the numerical simulations in the extended Floquet space up to an ultra-strong coupling regime and are not altered significantly for a finite atom-light detuning. Our results suggest that the effective model provides a good starting point to investigate the rich physics brought by counter-rotating terms in the frame of Floquet theory.  相似文献   

5.
K.V. Samokhin   《Annals of Physics》2009,324(11):2385-2407
Spin–orbit coupling of electrons with the crystal lattice plays a crucial role in materials without inversion symmetry, lifting spin degeneracy of the Bloch states and endowing the resulting nondegenerate bands with complex spin textures and topologically nontrivial wavefunctions. We present a detailed symmetry-based analysis of the spin–orbit coupling and the band degeneracies in noncentrosymmetric metals. We systematically derive the semiclassical equations of motion for fermionic quasiparticles near the Fermi surface, taking into account both the spin–orbit coupling and the Zeeman interaction with an applied magnetic field. Some of the lowest-order quantum corrections to the equations of motions can be expressed in terms of a fictitious “magnetic field” in the momentum space, which is related to the Berry curvature of the band wavefunctions. The band degeneracy points or lines serve as sources of a topologically nontrivial Berry curvature. We discuss the observable effects of the wavefunction topology, focusing, in particular, on the modifications to the Lifshitz–Onsager semiclassical quantization condition and the de Haas-van Alphen effect in noncentrosymmetric metals.  相似文献   

6.
We propose a modified formula which is used to determine the coupling parameter C in the Hamiltonian of the single-j shell. In comparison with the previously known formula, the new formula improves the agreement between the intruder single-j levels and the Nilsson ones. For studies of chiral bands within the particle rotor model, the new coupling parameter will considerably influence the energy splitting between the doublet bands.  相似文献   

7.
We explore the band structures of single-walled carbon nanotubes (SWCNTs) with two types of spin-orbit couplings. The obtained results indicate that weak Rashba spin-orbit coupling interaction can lead to the breaking of four-fold degeneracy in all tubes even though without the intrinsic SO coupling. The asymmetric splitting between conduction bands and valence bands is caused by both SO couplings at the same time. When the ratio of Rashba spin-orbit coupling to the intrinsic spin-orbit coupling is larger than 3, metallic zigzag nanotube is always metallic conductor, on the contrary it becomes semiconducting properties. However, only when this ratio is equal to about 3 or the intrinsic spin-orbit coupling is much weak, the metallic armchair nanotube still holds the metallic behavior in transport.  相似文献   

8.
To understand better the emergence of rotational structures in a variety of situations, a model in which two SU(3) irreps are coupled via a quadrupole-quadrupole (Q·Q) interaction is considered. Strong coupling of different SU(3) irreps gives rise to low-lying rotor bands. We study the excited bands that occur and the perturbation effects of the rotational decoupling. Persistence of rotational-like bands for a large range of coupling strengths is observed. However, although for very weak interaction strengths the electromagnetic transition rates are consistent with those of the rotor model, the excitation energy ratios look more vibrational, a phenomenon which has been observed in many nuclei.  相似文献   

9.
In light of the recently obtained LHC Higgs data, we examine the parameter space of the type II twoHiggs-doublet model, in which the 125 GeV Higgs bosons exhibit wrong sign Yukawa couplings. Combining the relevant theoretical and experimental limits, we find that the LHC Higgs data exclude most of the parameter space of the wrong sign Yukawa coupling. For m_H 600 GeV, the allowed samples are mainly distributed across several corners and narrow bands of m_A 20 GeV, 30 m_A 120 GeV, 240 GeV m_A 300 GeV, 380 GeV m_A 430 GeV, and480 GeV m_A 550 GeV. For m_A 600 GeV, m_H is required to be lower than 470 GeV. The light pseudo-scalar with a mass of 20 GeV is still permitted in the case of the wrong sign Yukawa coupling of 125 GeV Higgs bosons.  相似文献   

10.
We present theoretical and experimental studies on nonlinear beam propagation in lithium niobate waveguide arrays utilizing higher-order second harmonic bands. We find that the implementation of the higher-order second harmonic bands leads to a number of new effects. The combined interaction of two second harmonic bands with a propagating fundamental beam can lead to a complete inhibition of nonlinear effects or to the formation of discrete spatial solitons, depending only on the wavelength of the fundamental wave. Furthermore we analyze the properties of discrete solitons, allowing for linear coupling of the second harmonic. Here we predict and demonstrate experimentally a power dependent phase transition of the soliton topology.  相似文献   

11.
We investigate the interplay between the strong correlation and the spin-orbit coupling in the Kane-Mele-Hubbard model and obtain the qualitative phase diagram via the variational cluster approach. We identify, through an increase of the Hubbard U, the transition from the topological band insulator to either the spin liquid phase or the easy-plane antiferromagnetic insulating phase, depending on the strength of the spin-orbit coupling. A nontrivial evolution of the bulk bands in the topological quantum phase transition is also demonstrated.  相似文献   

12.
We report the observation of a net spin polarization in the n=1 image-potential state at the Cu(001) surface. The spin polarization is achieved by spin-selective multiphoton excitation of electrons from the spin-orbit split Cu d bands to the image-potential state using circularly polarized ultrafast light pulses. We show that by tuning the exciting photon energy, we can adjust the resonant coupling of the image-potential state to d bands of different double-group symmetry. This allows us to tune the spin polarization injected into the image-potential state.  相似文献   

13.
Density-functional calculations of the phonon spectrum and electron-phonon coupling in MgB (2) are presented. The E(2g) phonons, which involve in-plane B displacements, couple strongly to the p(x,y) electronic bands. The isotropic electron-phonon coupling constant is calculated to be about 0.8. Allowing for different order parameters in different bands, the superconducting lambda in the clean limit is calculated to be significantly larger. The E(2g) phonons are strongly anharmonic, and the nonlinear contribution to the coupling between the E(2g) modes and the p(x,y) bands is significant.  相似文献   

14.
We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a one- and three-near-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the interaction between holes and collective excitations, namely plasmons, phonons, and electron-hole pairs. Taking the topology of the bands around the Dirac energy for n-doped graphene into account, we compute the contribution to the scattering lifetimes due to electron-plasmon and electron phonon coupling.  相似文献   

15.
We study the phase transitions induced by the Jahn-Teller effect ofE-doublet ions in a cubic crystal with antiferrodistortive interactions. AnS=1 pseudospin model is constructed which takes the three lowest vibronic levels of the Jahn-Teller complexes into account. We find a second-order phase transition to a tetragonal phase with two inequivalent sublattices. The transitions between the vibronic levels give rise to bands of collective vibronic excitations with strongly temperature-dependent frequencies. The nature of the various modes is analyzed in detail. We also study the coupling to the elastic displacement field of the crystal. For a sufficiently large coupling constant, this coupling stabilizes a different low-temperature tetragonal phase with two equivalent sublattices. In a certain region of coupling constants, a transition occurs between the two tetragonal phases by second-order transitions to an intermediate phase of lower symmetry. The influence of the coupling on the dynamic behaviour is discussed.  相似文献   

16.
We study the phase transitions induced by the Jahn-Teller effect ofE-doublet ions in a cubic crystal with antiferrodistortive interactions. AnS=1 pseudospin model is constructed which takes the three lowest vibronic levels of the Jahn-Teller complexes into account. We find a second-order phase transition to a tetragonal phase with two inequivalent sublattices. The transitions between the vibronic levels give rise to bands of collective vibronic excitations with strongly temperature-dependent frequencies. The nature of the various modes is analyzed in detail. We also study the coupling to the elastic displacement field of the crystal. For a sufficiently large coupling constant, this coupling stabilizes a different low-temperature tetragonal phase with two equivalent sublattices. In a certain region of coupling constants, a transition occurs between the two tetragonal phases by second-order transitions to an intermediate phase of lower symmetry. The influence of the coupling on the dynamic behaviour is discussed.Supported by Schweizerischer Nationalfonds  相似文献   

17.
This paper applies geometric methods developed to understand chaos and transport in Hamiltonian systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two linearly coupled chi((2)) waveguides is modeled and analyzed in terms of transport and geometry in the phase space. This gives us a transport problem in the phase space resulting from the coupling of the two Hamiltonian systems for each waveguide. In particular, the effect of the presence of partial and complete barriers in the phase space on the transfer of intensity between the waveguides is studied, given a specific input and range of material properties. We show how these barriers break down as the coupling between the waveguides is increased and what the role of resonances in the phase space has in this. We also show how an increase in the coupling can lead to chaos and global transport and what effect this has on the intensity.  相似文献   

18.
We report a large normal-state magnetoresistance with temperature-dependent anisotropy in very clean epitaxial MgB2 thin films (residual resistivity much smaller than 1 microOmega cm) grown by hybrid physical-chemical vapor deposition. The magnetoresistance shows a complex dependence on the orientation of the applied magnetic field, with a large magnetoresistance (Delta(rho)/(rho)0=136%) observed for the field H perpendicular ab plane. The angular dependence changes dramatically as the temperature is increased, and at high temperatures the magnetoresistance maximum changes to H||ab. We attribute the large magnetoresistance and the evolution of its angular dependence with temperature to the multiple bands with different Fermi surface topology in MgB2 and the relative scattering rates of the sigma and pi bands, which vary with temperature due to stronger electron-phonon coupling for the sigma bands.  相似文献   

19.
Twin-hollow-core microstructured optical fibres have been fabricated and characterised for the first time. The fibre cladding structure results in guidance by the inhibited coupling mechanism, in which there is a low overlap between the core modes and surrounding structure. This results in minimal interaction between the modes of each core in the transmission bands of the fibre and hence minimal coupling between the cores. It is shown that light is able to couple between the cores via coupling to cladding struts in the high loss wavelength bands.  相似文献   

20.
We propose a spin-field-effect transistor based on spin-orbit coupling of both the Rashba and the Dresselhaus types. Different from earlier proposals, spin transport through our device is tolerant against spin-independent scattering processes. Hence the requirement of strictly ballistic transport can be relaxed. This follows from a unique interplay between the Dresselhaus and the Rashba coupling; these can be tuned to have equal strengths, leading to k-independent eigenspinors even in two dimensions. We discuss two-dimensional devices as well as quantum wires. In the latter, our setup presents strictly parabolic dispersions which avoids complications from anticrossings of different bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号