首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autoignition of acetylene, released from a finite-sized circular nozzle into a turbulent coflow of hot air confined in a pipe, has been the subject of a recent experimental study to supplement previous work for hydrogen and n-heptane. As with hydrogen and n-heptane, autoignition appears in the form of well-defined localized spots. Quantitative information is presented concerning the effects of turbulence intensity, turbulent lengthscale and injector diameter on the location of autoignition. The effects of these parameters on inhomogeneous autoignition have not been investigated experimentally before. The present study establishes that increasing the bulk velocity increases the autoignition length, as was reported for hydrogen and n-heptane. For the same turbulence intensity, the autoignition length increases as the injector diameter increases and as the turbulent lengthscale decreases. A simultaneous decrease in turbulence intensity and increase in lengthscale causes a reduction in autoignition length. Further, the frequency of appearance of the autoignition spots has also been measured. It is found to increase when autoignition occurs closer to the injector, and also at higher velocities. The observed trends are consistent with expectations arising from the dependence of the mixture fraction and the scalar dissipation rate on the geometrical and flow parameters. The data can be used for the validation of turbulent combustion models.  相似文献   

2.
In this paper, we report results of a numerical investigation of turbulent natural gas combustion for a jet in a coflow of lean combustion products in the Delft-Jet-in-Hot-Coflow (DJHC) burner which emulates MILD (Moderate and Intense Low Oxygen Dilution) combustion behavior. The focus is on assessing the performance of the Eddy Dissipation Concept (EDC) model in combination with two-equation turbulence models and chemical kinetic schemes for about 20 species (Correa mechanism and DRM19 mechanism) by comparing predictions with experimental measurements. We study two different flame conditions corresponding to two different oxygen levels (7.6% and 10.9% by mass) in the hot coflow, and for two jet Reynolds number (Re = 4,100 and Re = 8,800). The mean velocity and turbulent kinetic energy predicted by different turbulence models are in good agreement with data without exhibiting large differences among the model predictions. The realizable k-ε model exhibits better performance in the prediction of entrainment. The EDC combustion model predicts too early ignition leading to a peak in the radial mean temperature profile at too low axial distance. However the model correctly predicts the experimentally observed decreasing trend of lift-off height with jet Reynolds number. A detailed analysis of the mean reaction rate of the EDC model is made and as possible cause for the deviations between model predictions and experiments a low turbulent Reynolds number effect is identified. Using modified EDC model constants prediction of too early ignition can be avoided. The results are weakly sensitive to the sub-model for laminar viscosity and laminar diffusion fluxes.  相似文献   

3.
Turbulent premixed flames exhibit different structural and propagation characteristics with increasing upstream turbulence intensity starting from thin wrinkled flames in the Corrugated Flamelet regimes to a flame with a thicker preheat zone in the Thin Reaction Zone Regime (TRZ) and finally, becoming more disorganized or broken in the Distributed or Broken Reaction Zone (D/BRZ) regimes under intense turbulence. A single comprehensive predictive model that can span all regimes does not currently exist, and in this study we explore the ability of the stand-alone one-dimensional linear-eddy mixing (LEM) model to simulate the flames in all these regimes. Past applications of this 1DLEM model have demonstrated reasonable predictions in the flamelet and TRZ regimes and here, new experiments in the TRZ regime are specifically addressed to evaluate the predictive capability of this model. Additional simulations in the D/BRZ regimes (where no data is currently available) are performed to determine if the model can be extended to the high turbulence regime. Comparison with the data in the TRZ regime shows satisfactory agreement. Analysis suggests varying levels of preheat zone broadening in all the TRZ and D/BRZ cases. While the average heat release distribution for the TRZ cases is nearly identical to the laminar unstrained baseline, changes to the species and heat release distribution are observed only at a high Karlovitz Number K a > 103. In the D/BRZ regime it is shown that the transition is related to enhanced turbulent diffusion that dominates molecular diffusion effects causing deviations from the laminar baseline.  相似文献   

4.
The present paper is focused on performing a thorough investigation of first order Conditional Moment Closure (CMC) including an inhomogeneous turbulent mixing model for the conditional scalar dissipation rate to predict autoignition. Autoignition of a hydrogen and nitrogen fuel mixture in a heated coflow of air is examined. A sensitivity analysis is proposed for the autoignition length with respect to the mixing field, as well as a comparison of the effects of the inhomogeneous turbulent and Amplitude Mapping Closure (AMC) mixing models. The choice of turbulence constants only change predicted ignition length by approximately 5 % when applied to the AMC mixing model. Predictions of ignition length performed by the inhomogeneous model are lower than that of the AMC model by up to 15 %. The current ignition predictions are in reasonable agreement with the experimental data and previous simulation results. Two of the four regimes observed experimentally are reproduced qualitatively. Further improvement may be gained by using large eddy simulation and a gradient model for the conditional velocity in the inhomogeneous turbulent mixing model.  相似文献   

5.
A systematic study relying on Direct Numerical Simulations (DNS) of premixed hydrogen-air mixtures has been performed to investigate the hotspot ignition characteristics and ignition probability under turbulent conditions. An ignition diagram is first obtained under laminar conditions by a parametric study. The impact of turbulence intensity on ignition delays and ignition probability is then quantified in a statistically-significant manner by repeating a large number of independent DNS realizations. By tracking in a Lagrangian frame the ignition spot, the balance between heat diffusion and heat of chemical reaction is observed as function of time. The evolution of each chemical species and radicals at the ignition spot is checked and the mechanism leading to ignition or misfire are analyzed. It is observed that successful ignition is mostly connected to a sufficient build-up of a HO2 pool, ultimately initiating production of OH. Turbulence always delays ignition, and ignition probability goes to zero at sufficiently high turbulence intensity when keeping temperature and size of the initial hotspot constant.  相似文献   

6.
The results of experimental and numerical investigation of flow in a circular conical diffuser with a small conicity angle ensuring separationless flow are presented. The measurements are carried out in an air flow with the Reynolds number Re2 in the diffuser exit section ranging from 600 to 3000. A considerable effect of the channel expansion on the flow pattern is found to exist. It is shown that, as distinct from a tube, in which only laminar flow can be realized as steady for Re < 2000, in the exit section of a diffuser with the generator slope of 0.3° and a length equal to 70 entry diameters a developed turbulent flow is formed for Re2 > 1000. For Re2 > 1300 this flow is steady, that is, almost independent of the turbulence level at the entry, and is determined by the Reynolds number Re2 in the exit section. For Re2 ≈ 1000 the turbulent flow continuously goes over into a laminar flow. The flow parameters measured at the diffuser exit correspond to calculations in accordance with the threeequation turbulence model.  相似文献   

7.
Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains its computational stability through a unique procedure that prevents the energy transfer between the grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, kSGS, containing a production term proportional to the square root of kSGS, its applicability to flows with both laminar and turbulent regions is not so high. This is because such a production term causes kSGS to self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on the inflow or initial condition of kSGS. To resolve these issues, in the present study, the mixed-timescale (MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the isotropic eddy-viscosity part and the production term in the kSGS transport equation. In the MTS model, the SGS turbulence energy, kes, estimated by filtering the instantaneous flow field is used. Since the kes approaches zero by itself in the laminar flow region, the self-reproduction property brought about by using the conventional kSGS transport equation model is eliminated in this modified model. Therefore, this modification is expected to enhance the applicability of the model to flows with both laminar and turbulent regions. The model performance is tested in plane channel flows with different Reynolds numbers and in a backward-facing step flow. The results demonstrate that the proposed model successfully predicts a parabolic velocity profile under laminar flow conditions and reduces the dependence on the grid resolution to the same degree as the unmodified model by Abe (2013) for turbulent flow conditions. Moreover, it is shown that the present model is effective at transitional Reynolds numbers. Furthermore, the present model successfully provides accurate results for the backward-facing step flow with various grid resolutions. Thus, the proposed model is considered to be a refined anisotropy-resolving SGS model applicable to laminar, transitional, and turbulent flows.  相似文献   

8.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Oscillating boundary layer flow over an infinite flat plate at rest was simulated using the kkLω turbulence model for a Reynolds number range of 32  Reδ  10,000 ranging from fully laminar flow to fully turbulent flow. The kkLω model was validated by comparing the predictions with LES results and experimental results for intermittently turbulent and fully turbulent flow regimes. The good agreement obtained between the kkLω model prediction with the experimental and LES results indicate that the kkLω model is able to accurately simulate transient intermittently turbulent flow and as well as accurately predict the onset of turbulence for such oscillatory flows.  相似文献   

10.
A tabulated, pseudo-turbulent Probability Density Function (PDF) model for premixed combustion is proposed. The Linear-Eddy Model (LEM) is used to construct the PDFs for a temperature-based progress variable in a premixed, turbulent methane/air V-flame produced by the Cambridge slot burner. As a second case study, the LEM PDFs are similarly compared to PDFs extracted from Direct Numerical Simulations (DNS) of a turbulent premixed flame. LEM demonstrates the ability to reproduce the salient features from experimental and DNS PDFs; moreover, it is able to better capture turbulent effects than previously suggested laminar flamelet PDF models. The Scalar Dissipation Rate (SDR) for premixed combustion is likewise investigated. The stochastic nature of LEM enables it to mimic the overall behaviors of turbulent reactions inexpensively and qualitatively. Crucially, LEM appears to be well suited for the preprocessing tabulation of PDF and SDR models for a number of premixed combustion simulation strategies.  相似文献   

11.
This paper presents laminar and turbulent mixed convection solutions of a driven cavity flow using the finite element method. For the laminar flow, distributions of velocity and temperature with and without the effect of buoyancy force are presented and compared. For the turbulent flow, governing partial differential equations of the thermal turbulence two-equati on model and kinetic turbulence two-equation model are used. Corresponding results such as kinetic eddy diffusivity, kinetic eddy energy, thermal eddy energy and their dissipations are presented.  相似文献   

12.
We studied experimentally the effect of turbulent thermal diffusion in a multi-fan turbulence generator which produces a nearly homogeneous and isotropic flow with a small mean velocity. Using particle image velocimetry and image processing techniques, we showed that in a turbulent flow with an imposed mean vertical temperature gradient (stably stratified flow) particles accumulate in the regions with the mean temperature minimum. These experiments detected the effect of turbulent thermal diffusion in a multi-fan turbulence generator for relatively high Reynolds numbers. The experimental results are in compliance with the results of the previous experimental studies of turbulent thermal diffusion in oscillating grid turbulence (Buchholz et al. 2004; Eidelman et al. 2004). We demonstrated that the turbulent thermal diffusion is an universal phenomenon. It occurs independently of the method of turbulence generation, and the qualitative behavior of particle spatial distribution in these very different turbulent flows is similar. Competition between turbulent fluxes caused by turbulent thermal diffusion and turbulent diffusion determines the formation of particle inhomogeneities.  相似文献   

13.
14.
The mixture fraction variable, , is very useful in describing reaction zone structure in nonpremixed flames. Extinction limits and turbulent mixing are often described as a function of this variable. Experimental evaluation of is critical for improving our understanding of the influence of turbulent mixing on the chemistry process. Heretofore, the evaluation of mixture fraction in combusting flow required multiple simultaneous concentration measurements. In this paper we present a fuel designed to permit measurements of mixture fraction by Rayleigh scattering technique only. A Rayleigh intensity/mixture fraction correspondence has been obtained experimentally in a laminar coflow flame. The influence of strain rate and differential diffusion effects have been investigated using laminar counterflow diffusion flame and shifting equilibrium chemistry models. The results obtained from comparisons between experiments and these models are very encouraging and suggest that the Rayleigh/mixture fraction correspondence established is valid under both the turbulent mixing and laminar strained flamelet combustion regimes.  相似文献   

15.
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.  相似文献   

16.
17.
The flow and temperature fields of a turbulent impinging jet are rather complex. In order to accurately describe the flow and heat-transfer process, two important factors that must be taken into account are the turbulence model and the wall function. Several turbulence models, including κ–? turbulence models, κ–ω turbulence models, low-Re turbulence models, the κ–κl–ω turbulence model, the Transition SST turbulence model, the V2F turbulence model and the RSM turbulence model, are examined and compared to experimental data. Furthermore, for the near wall region, various wall functions are presented for comparison and they include the standard wall function, the scale wall function, the non-equilibrium wall function and the enhanced wall function. The distribution features of velocity, turbulent kinetic energy and Nusselt number are determined in order to provide a reliable reference for the multiphase impinging jet in the future.  相似文献   

18.
To investigate the diffusion of fluid particles around a cylinder in a turbulent flow, we have developed two new types of model for simulating the trajectory of particles:(1) a model combining random Fourier modes and random flight (RF); (2) a pure kinematic simulation (KS) by random Fourier modes. In model 1 the large-scale turbulence is simulated by a sum of random Fourier modes varying in space and time, and the small-scale random motion of particles is simply modelled by an Itô type of stochastic differential equation with a memory time comparable to the Lagrangian time scaleT s L of the small-scale motion. In model 2, both large- and small-scale turbulence is simulated using random Fourier modes. The change of turbulence around the cylinder is modelled by rapid distortion theory (RDT), although the small-scale motion of particles in the RF model is simply assumed to keep the homogeneous random behaviour. These models give very similar and realistic trajectories showing rapid changes of direction due to the small-scale motion.  相似文献   

19.
The flow fields in the neighbourhoods of series vascular stenoses are studied numerically for the Reynolds numbers from 100 to 4000, diameter constriction ratios of 0.2–0.6 and spacing ratios of 1, 2, 3, 4 and ∞. In this study, it has been further verified that in the laminar flow region, the numerical predictions by kω turbulence model matched those by the laminar‐flow modelling very well. This suggests that the kω turbulence model is capable of the prediction of the laminar flow as well as the prediction of the turbulent stenotic flow with good accuracy. The extent of the spreading of the recirculation region from the first stenosis and its effects on the flow field downstream of the second stenosis depend on the stenosis spacing ratio, constriction ratio and the Reynolds number. For c1 = 0.5 with c2c1, the peak value of wall vorticity generated by the second stenosis is always less than that generated by the first stenosis. However, the maximum centreline velocity and turbulence intensity at the second stenosis are higher than those at the first stenosis. In contrast, for c1 = 0.5 with c2 = 0.6, the maximum values at the second stenosis are much higher than those at the first stenosis whether for centreline velocity and turbulence intensity or for wall vorticity. The peak values of the wall vorticity and the centreline disturbance intensity both grow up with the Reynolds number increasing. The present study shows that the more stenoses can result in a lower critical Reynolds number that means an earlier occurrence of turbulence for the stenotic flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
针对高速工况下的液膜润滑螺旋槽端面机械密封,建立了其湍流润滑模型,采用有限单元法结合松弛迭代技术实现了润滑方程和液膜湍流模型的数值求解,对比分析了层流模型和湍流模型下不同螺旋槽几何参数和工况参数对密封性能的影响. 结果表明:液膜湍流效应显著提升了螺旋槽机械密封端面液膜的动力润滑效应,密封的开启力、泄漏率和刚度明显大于层流模型预测值. 在不同条件下,比较而言螺旋槽内产生更加明显的湍流效应,其内液膜流动行为远不同于层流模型. 以开启力为优化目标,湍流模型获得的优化螺旋槽几何参数在螺旋角、槽深明显不同于层流模型. 在高速和低黏度介质下,机械密封的湍流效应不可忽略.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号