首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The available data on \(|\Delta B| = |\Delta S| = 1\) decays are in good agreement with the Standard Model when permitting subleading power corrections of about \(15\,\%\) at large hadronic recoil. Constraining new-physics effects in \(\mathcal {C}_{7}^{\mathrm {}}\) , \(\mathcal {C}_{9}^{\mathrm {}}\) , \(\mathcal {C}_{10}^{\mathrm {}}\) , the data still demand the same size of power corrections as in the Standard Model. In the presence of chirality-flipped operators, all but one of the power corrections reduce substantially. The Bayes factors are in favor of the Standard Model. Using new lattice inputs for \(B\rightarrow K^*\) form factors and under our minimal prior assumption for the power corrections, the favor shifts toward models with chirality-flipped operators. We use the data to further constrain the hadronic form factors in \(B\rightarrow K\) and \(B\rightarrow K^*\) transitions.  相似文献   

2.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

3.
This paper inquires into the concavity of the map \(N\mapsto v_s(N)\) from the integers \(N\ge 2\) into the minimal average standardized Riesz pair-energies \(v_s(N)\) of \(N\) -point configurations on the sphere \(\mathbb {S}^2\) for various \(s\in \mathbb {R}\) . The standardized Riesz pair-energy of a pair of points on \(\mathbb {S}^2\) a chordal distance \(r\) apart is \(V_s(r)= s^{-1}\left( r^{-s}-1 \right) \) , \(s \ne 0\) , which becomes \(V_0(r) = \ln \frac{1}{r}\) in the limit \(s\rightarrow 0\) . Averaging it over the \(\left( \begin{array}{c} N\\ 2\end{array}\right) \) distinct pairs in a configuration and minimizing over all possible \(N\) -point configurations defines \(v_s(N)\) . It is known that \(N\mapsto v_s(N)\) is strictly increasing for each \(s\in \mathbb {R}\) , and for \(s<2\) also bounded above, thus “overall concave.” It is (easily) proved that \(N\mapsto v_{-2}^{}(N)\) is even locally strictly concave, and that so is the map \(2n\mapsto v_s(2n)\) for \(s<-2\) . By analyzing computer-experimental data of putatively minimal average Riesz pair-energies \(v_s^x(N)\) for \(s\in \{-1,0,1,2,3\}\) and \(N\in \{2,\ldots ,200\}\) , it is found that the map \(N\mapsto {v}_{-1}^x(N)\) is locally strictly concave, while \(N\mapsto {v}_s^x(N)\) is not always locally strictly concave for \(s\in \{0,1,2,3\}\) : concavity defects occur whenever \(N\in {\mathcal {C}}^{x}_+(s)\) (an \(s\) -specific empirical set of integers). It is found that the empirical map \(s\mapsto {\mathcal {C}}^{x}_+(s),\ s\in \{-2,-1,0,1,2,3\}\) , is set-theoretically increasing; moreover, the percentage of odd numbers in \({\mathcal {C}}^{x}_+(s),\ s\in \{0,1,2,3\}\) is found to increase with \(s\) . The integers in \({\mathcal {C}}^{x}_+(0)\) are few and far between, forming a curious sequence of numbers, reminiscent of the “magic numbers” in nuclear physics. It is conjectured that these new “magic numbers” are associated with optimally symmetric optimal-log-energy \(N\) -point configurations on \(\mathbb {S}^2\) . A list of interesting open problems is extracted from the empirical findings, and some rigorous first steps toward their solutions are presented. It is emphasized how concavity can assist in the solution to Smale’s \(7\) th Problem, which asks for an efficient algorithm to find near-optimal \(N\) -point configurations on \(\mathbb {S}^2\) and higher-dimensional spheres.  相似文献   

4.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

5.
There are four types of two-Higgs doublet models under a discrete \(Z_2\) symmetry imposed to avoid tree-level flavor-changing neutral current, i.e. type-I, type-II, type-X, and type-Y models. We investigate the possibility to discriminate the four models in the light of the flavor physics data, including \(B_s\) \(\bar{B}_s\) mixing, \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) , \(B\rightarrow \tau \nu \) and \(\bar{B} \rightarrow X_s \gamma \) decays, the recent LHC Higgs data, the direct search for charged Higgs at LEP, and the constraints from perturbative unitarity and vacuum stability. After deriving the combined constraints on the Yukawa interaction parameters, we have shown that the correlation between the mass eigenstate rate asymmetry \(A_{\Delta \Gamma }\) of \(B_{s} \rightarrow \mu ^+ \mu ^-\) and the ratio \(R=\mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{exp}/ \mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{SM}\) could be a sensitive probe to discriminate the four models with future precise measurements of the observables in the \(B_{s} \rightarrow \mu ^+ \mu ^-\) decay at LHCb.  相似文献   

6.
We consider Hermitian and symmetric random band matrices H = (h xy ) in ${d\,\geqslant\,1}$ d ? 1 dimensions. The matrix entries h xy , indexed by ${x,y \in (\mathbb{Z}/L\mathbb{Z})^d}$ x , y ∈ ( Z / L Z ) d , are independent, centred random variables with variances ${s_{xy} = \mathbb{E} |h_{xy}|^2}$ s x y = E | h x y | 2 . We assume that s xy is negligible if |x ? y| exceeds the band width W. In one dimension we prove that the eigenvectors of H are delocalized if ${W\gg L^{4/5}}$ W ? L 4 / 5 . We also show that the magnitude of the matrix entries ${|{G_{xy}}|^2}$ | G x y | 2 of the resolvent ${G=G(z)=(H-z)^{-1}}$ G = G ( z ) = ( H - z ) - 1 is self-averaging and we compute ${\mathbb{E} |{G_{xy}}|^2}$ E | G x y | 2 . We show that, as ${L\to\infty}$ L → ∞ and ${W\gg L^{4/5}}$ W ? L 4 / 5 , the behaviour of ${\mathbb{E} |G_{xy}|^2}$ E | G x y | 2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions.  相似文献   

7.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

8.
We consider N Brownian particles moving on a line starting from initial positions \(\mathbf{{u}}\equiv \{u_1,u_2,\ldots u_N\}\) such that \(0 . Their motion gets stopped at time \(t_s\) when either two of them collide or when the particle closest to the origin hits the origin for the first time. For \(N=2\) , we study the probability distribution function \(p_1(m|\mathbf{{u}})\) and \(p_2(m|\mathbf{{u}})\) of the maximal distance travelled by the \(1^{\text {st}}\) and \(2^{\text {nd}}\) walker till \(t_s\) . For general N particles with identical diffusion constants \(D\) , we show that the probability distribution \(p_N(m|\mathbf{u})\) of the global maximum \(m_N\) , has a power law tail \(p_i(m|\mathbf{{u}}) \sim {N^2B_N\mathcal {F}_{N}(\mathbf{u})}/{m^{\nu _N}}\) with exponent \(\nu _N =N^2+1\) . We obtain explicit expressions of the function \(\mathcal {F}_{N}(\mathbf{u})\) and of the N dependent amplitude \(B_N\) which we also analyze for large N using techniques from random matrix theory. We verify our analytical results through direct numerical simulations.  相似文献   

9.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

10.
We consider the block band matrices, i.e. the Hermitian matrices $H_N$ , $N=|\Lambda |W$ with elements $H_{jk,\alpha \beta }$ , where $j,k \in \Lambda =[1,m]^d\cap \mathbb {Z}^d$ (they parameterize the lattice sites) and $\alpha , \beta = 1,\ldots , W$ (they parameterize the orbitals on each site). The entries $H_{jk,\alpha \beta }$ are random Gaussian variables with mean zero such that $\langle H_{j_1k_1,\alpha _1\beta _1}H_{j_2k_2,\alpha _2\beta _2}\rangle =\delta _{j_1k_2}\delta _{j_2k_1} \delta _{\alpha _1\beta _2}\delta _{\beta _1\alpha _2} J_{j_1k_1},$ where $J=1/W+\alpha \Delta /W$ , $\alpha < 1/4d$ . This matrices are the special case of Wegner’s $W$ -orbital models. Assuming that the number of sites $|\Lambda |$ is finite, we prove universality of the local eigenvalue statistics of $H_N$ for the energies $|\lambda _0|< \sqrt{2}$ .  相似文献   

11.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

12.
The inclusion relations for the spaces $ \mathcal{H}\mathcal{K} $ (I), L(I), $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I), and L 2(I) are found. On unbounded intervals, functions in $ \mathcal{H}\mathcal{K} $ (I) ∩ $ \mathcal{B}\mathcal{V} $ (I) need not be Lebesgue integrable.  相似文献   

13.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

14.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

15.
In this work we extend the results of the reunion probability of \(N\) one-dimensional random walkers to include mixed boundary conditions between their trajectories. The level of the mixture is controlled by a parameter \(c\) , which can be varied from \(c=0\) (independent walkers) to \(c\rightarrow \infty \) (vicious walkers). The expressions are derived by using Quantum Mechanics formalism (QMf) which allows us to map this problem into a Lieb-Liniger gas (LLg) of \(N\) one-dimensional particles. We use Bethe ansatz and Gaudin’s conjecture to obtain the normalized wave-functions and use this information to construct the propagator. As it is well-known, depending on the boundary conditions imposed at the endpoints of a line segment, the statistics of the maximum heights of the reunited trajectories have some connections with different ensembles in Random Matrix Theory. Here we seek to extend those results and consider four models: absorbing, periodic, reflecting, and mixed. In all four cases, the probability that the maximum height is less or equal than \(L\) takes the form \(F_N(L)=A_N\sum _{\varvec{k}\in \Omega _{\text {B}}} \mathrm{e}^{-\sum _{j=1}^Nk_j^2}\mathcal {V}_N(\varvec{k})\) , where \(A_N\) is a normalization constant, \(\mathcal {V}_N(\varvec{k})\) contains a deformed and weighted Vandermonde determinant, and \(\Omega _{\text {B}}\) is the solution set of quasi-momenta \(\varvec{k}\) obeying the Bethe equations for that particular boundary condition.  相似文献   

16.
The feasibility of initiating a low-voltage discharge in pure (free of readily ionizable impurity) molecular hydrogen is studied theoretically. A discharge with cathode fall φ1 = 10 V, interelectrode gap L = 2 cm, and total hydrogen concentration \(N_{H_2 }^{(0)} = 2 \times 10^{15}\) cm?3 is considered by way of example. The plasma parameters, including concentration \(N_{H^ - }\) of negative hydrogen ions H?, are calculated. The concentration of H? ions is maximal in the near-anode plasma and may reach \(\left( {N_{H^ - } } \right)_{\max } = 0.5 \times 10^{12}\) cm?3. Concentration \(N_{H^ - }\) can be increased severalfold by introducing a small amount of cesium into the discharge, \(N_{Cs}^{(0)} \leqslant 10^{13}\) cm?3. Cesium ionizes completely and concentrates in narrow near-electrode layers, which are depleted with the plasma in the purely hydrogen discharge. The discharge modifications studied in this work may be of interest as low-voltage volume plasma sources of H? ions under conditions when a high concentration of cesium in the source plasma is undesirable.  相似文献   

17.
In this article we give a new observation of Pesin’s entropy formula, motivated from Mañé’s proof of (Ergod Theory Dyn Sys 1:95–102, 1981). Let \(M\) be a compact Riemann manifold and \(f:\,M\rightarrow M\) be a \(C^1\) diffeomorphism on \(M\) . If \(\mu \) is an \(f\) -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-H \(\ddot{\text {o}}\) lder-continuous(see Definition 1.1), then we have Pesin’s entropy formula, i.e., the metric entropy \(h_\mu (f)\) satisfies $$\begin{aligned} h_{\mu }(f)=\int \sum _{\lambda _i(x)> 0}\lambda _i(x)d\mu , \end{aligned}$$ where \(\lambda _1(x)\ge \lambda _2(x)\ge \cdots \ge \lambda _{dim\,M}(x)\) are the Lyapunov exponents at \(x\) with respect to \(\mu .\) Nonuniformly-H \(\ddot{\text {o}}\) lder-continuous is a new notion from probabilistic perspective weaker than \(C^{1+\alpha }.\)   相似文献   

18.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

19.
We report on the p T dependence of nuclear modification factors (R CP) for K S 0 , ??, ?? and the $\bar NK_S^0 $ ratios at mid-rapidity from Au+Au collisions at $\sqrt {s_{NN} } $ = 39, 11.5 and 7.7 GeV. At $\sqrt {s_{NN} } $ = 39 GeV, the R CP data show a baryon/meson separation at intermediate p T and a suppression for K S 0 for p T up to 4.5 GeV/c; the $\bar \Lambda K_S^0 $ shows baryon enhancement in the most central collisions. However, at $\sqrt {s_{NN} } $ = 11.5 and 7.7 GeV, R CP shows less baryon/meson separation and $\bar NK_S^0 $ shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 or 7.7 GeV might be distinct from that created at $\sqrt {s_{NN} } $ = 39 GeV.  相似文献   

20.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号