首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This note introduces a refinement to a previously proposed tabu search algorithm for vehicle routing problems with time windows. This refinement yields new best known solutions on a set of benchmark instances of the multi-depot, the periodic and the site-dependent vehicle routing problems with time windows.  相似文献   

2.
Recently proved successful for variants of the vehicle routing problem (VRP) involving time windows, genetic algorithms have not yet shown to compete or challenge current best search techniques in solving the classical capacitated VRP. A new hybrid genetic algorithm to address the capacitated VRP is proposed. The basic scheme consists in concurrently evolving two populations of solutions to minimize total travelled distance using genetic operators combining variations of key concepts inspired from routing techniques and search strategies used for a time variant of the problem to further provide search guidance while balancing intensification and diversification. Results from a computational experiment over common benchmark problems report the proposed approach to be very competitive with the best-known methods.  相似文献   

3.
In this paper, we address a bi-objective vehicle routing problem in which the total length of routes is minimized as well as the balance of routes, i.e. the difference between the maximal route length and the minimal route length. We propose a meta-heuristic method based on an evolutionary algorithm involving classical multi-objective operators. To improve its efficiency, two mechanisms, which favor the diversification of the search, have been added. First, an elitist diversification mechanism is used in cooperation with classical diversification methodologies. Second, a parallel model designed to take into account the elitist diversification is proposed. Our method is tested on standard benchmarks for the vehicle routing problem. The contribution of the introduced mechanisms is evaluated by different performance metrics. All the experimentations indicate a strict improvement of the generated Pareto set.  相似文献   

4.
This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature.  相似文献   

5.
We generalize the standard vehicle routing problem with time windows by allowing both traveling times and traveling costs to be time-dependent functions. In our algorithm, we use a local search to determine routes of the vehicles. When we evaluate a neighborhood solution, we must compute an optimal time schedule for each route. We show that this subproblem can be efficiently solved by dynamic programming, which is incorporated in the local search algorithm. The neighborhood of our local search consists of slight modifications of the standard neighborhoods called 2- opt*, cross exchange and Or-opt. We propose an algorithm that evaluates solutions in these neighborhoods more efficiently than the ones computing the dynamic programming from scratch by utilizing the information from the past dynamic programming recursion used to evaluate the current solution. We further propose a filtering method that restricts the search space in the neighborhoods to avoid many solutions having no prospect of improvement. We then develop an iterated local search algorithm that incorporates all the above ingredients. Finally we report computational results of our iterated local search algorithm compared against existing methods, and confirm the effectiveness of the restriction of the neighborhoods and the benefits of the proposed generalization.  相似文献   

6.
Constraint Programming typically uses the technique of depth-first branch and bound as the method of solving optimization problems. Although this method can give the optimal solution, for large problems, the time needed to find the optimal can be prohibitive. This paper introduces a method for using local search techniques within a Constraint Programming framework, and applies this technique to vehicle routing problems. We introduce a Constraint Programming model for vehicle routing, and a system for integrating Constraint Programming and local search techniques. We then describe how the method can be accelerated by handling core constraints using fast local checks, while other more complex constraints are left to the constraint propagation system. We have coupled our local search method with a meta-heuristic to avoid the search being trapped in local minima. Several meta-heuristics are investigated ranging from a simple Tabu Search method to Guided Local Search. An empirical study over benchmark problems shows the relative merits of these techniques. Investigations indicate that the specific long-term memory technique used by Guided Local Search can be used as a diversification method for Tabu Search, resulting in significant benefit. Several new best solutions on the Solomon problems are found in relatively few iterations of our algorithm.  相似文献   

7.
This paper presents an efficient hybrid metaheuristic solution for multi-depot vehicle routing with time windows (MD-VRPTW). MD-VRPTW involves the routing of a set of vehicles with limited capacity from a set of depots to a set of geographically dispersed customers with known demands and predefined time windows. The present work aims at using a hybrid metaheuristic algorithm in the class of High-Level Relay Hybrid (HRH) which works in three levels and uses an efficient genetic algorithm as the main optimization algorithm and tabu search as an improvement method. In the genetic algorithm various heuristics incorporate local exploitation in the evolutionary search. An operator deletion- retrieval strategy is executed which shows the efficiency of the inner working of the proposed method. The proposed algorithm is applied to solve the problems of the standard Cordeau??s Instances. Results show that proposed approach is quite effective, as it provides solutions that are competitive with the best known in the literature.  相似文献   

8.
Vehicle routing problem with time windows (VRPTW) involves the routing of a set of vehicles with limited capacity from a central depot to a set of geographically dispersed customers with known demands and predefined time windows. The problem is solved by optimizing routes for the vehicles so as to meet all given constraints as well as to minimize the objectives of traveling distance and number of vehicles. This paper proposes a hybrid multiobjective evolutionary algorithm (HMOEA) that incorporates various heuristics for local exploitation in the evolutionary search and the concept of Pareto's optimality for solving multiobjective optimization in VRPTW. The proposed HMOEA is featured with specialized genetic operators and variable-length chromosome representation to accommodate the sequence-oriented optimization in VRPTW. Unlike existing VRPTW approaches that often aggregate multiple criteria and constraints into a compromise function, the proposed HMOEA optimizes all routing constraints and objectives simultaneously, which improves the routing solutions in many aspects, such as lower routing cost, wider scattering area and better convergence trace. The HMOEA is applied to solve the benchmark Solomon's 56 VRPTW 100-customer instances, which yields 20 routing solutions better than or competitive as compared to the best solutions published in literature.  相似文献   

9.
本文结合汽车零部件第三方物流的实际背景,提出了带时间窗的可分车运输同时收发车辆路径问题(简称SVRPSPDTW),并给出了问题的数学模型,同时提出两个求解该问题的启发式算法,最后进行了数值试验.由于没有可以利用的算例,本文在Solomn测试基准库的基础上构建了针对新问题的算例.计算结果表明,所有算例计算时间均不超过1秒,且算法1无论是从车辆的使用数还是从车辆行驶的路径总长度上都明显优于算法2,从而说明算法1是寻找SVRPSPDTW问题初始可行解的较为有效的算法.  相似文献   

10.
Many definitive and approximate methods have been so far proposed for the construction of an optimal binary search tree. One such method is the use of evolutionary algorithms with satisfactorily improved cost efficiencies. This paper will propose a new genetic algorithm for making a near-optimal binary search tree. In this algorithm, a new greedy method is used for the crossover of chromosomes while a new way is also developed for inducing mutation in them. Practical results show a rapid and desirable convergence towards the near-optimal solution. The use of a heuristic to create not so costly chromosomes as the first offspring, the greediness of the crossover, and the application of elitism in the selection of future generation chromosomes are the most important factors leading to near-optimal solutions by the algorithm at desirably high speeds. Due to the practical results, increasing problem size does not cause any considerable difference between the solution obtained from the algorithm and exact solution.  相似文献   

11.
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.  相似文献   

12.
This paper presents a unified tabu search heuristic for the vehicle routing problem with time windows and for two important generalizations: the periodic and the multi-depot vehicle routing problems with time windows. The major benefits of the approach are its speed, simplicity and flexibility. The performance of the heuristic is assessed by comparing it to alternative methods on benchmark instances of the vehicle routing problem with time windows. Computational experiments are also reported on new randomly generated instances for each of the two generalizations.  相似文献   

13.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

14.
为提高带时间窗车辆路径问题的求解精度和求解效率,设计了一种混合Memetic算法。采用基于时间窗升序排列的混合插入法构造初始种群,提高解质量的同时兼顾多样性,扩大搜索空间;任意选择组成父代种群,以维持搜索空间;运用简化的变邻域搜索进行局部开发,引入邻域半径减少策略提高开发效率,约束放松机制开放局部空间;以弧为对象,增加种群向当前最优解和全局最优解的后学习过程。实验结果表明,所提出的算法具有较好的寻优精度和稳定性,能搜索到更好的路径长度结果,更新了现有研究在最短路径长度的目标函数上的下限。  相似文献   

15.
以人民币现金押运为研究背景,考虑了一种基于多类型风险的现金押运路线问题,以在途风险成本、库存现金风险成本以及运输成本为优化目标,建立了混合整数线性规划模型,并提出了一种基于多样化策略和改进邻域搜索的混合遗传算法,其中遗传算法对押运路线进行选择,贪心算法用来求解各类风险指标。数值实验分别对问题特性和算法性能进行了分析。实验结果表明:1)混合遗传算法能求解更大规模的问题,得到较好的解,并很好地平衡了运行时间和求解质量;2)多类型风险影响了行驶路线;3)客户的期望需求影响了库存现金风险。  相似文献   

16.
This paper proposes a three-phase matheuristic solution strategy for the capacitated multi-commodity fixed-cost network design problem with design-balance constraints. The proposed matheuristic combines exact and neighbourhood-based methods. Tabu search and restricted path relinking meta-heuristics cooperate to generate as many feasible solutions as possible. The two meta-heuristics incorporate new neighbourhoods, and computationally efficient exploration procedures. The feasible solutions generated by the two procedures are then used to identify an appropriate part of the solution space where an exact solver intensifies the search. Computational experiments on benchmark instances show that the proposed algorithm finds good solutions to large-scale problems in a reasonable amount of time.  相似文献   

17.
In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure.  相似文献   

18.
This paper presents a genetic algorithm for solving capacitated vehicle routing problem, which is mainly characterised by using vehicles of the same capacity based at a central depot that will be optimally routed to supply customers with known demands. The proposed algorithm uses an optimised crossover operator designed by a complete undirected bipartite graph to find an optimal set of delivery routes satisfying the requirements and giving minimal total cost. We tested our algorithm with benchmark instances and compared it with some other heuristics in the literature. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found.  相似文献   

19.
In single-objective optimization it is possible to find a global optimum, while in the multi-objective case no optimal solution is clearly defined, but several that simultaneously optimize all the objectives. However, the majority of this kind of problems cannot be solved exactly as they have very large and highly complex search spaces. Recently, meta-heuristic approaches have become important tools for solving multi-objective problems encountered in industry as well as in the theoretical field. Most of these meta-heuristics use a population of solutions, and hence the runtime increases when the population size grows. An interesting way to overcome this problem is to apply parallel processing. This paper analyzes the performance of several parallel paradigms in the context of population-based multi-objective meta-heuristics. In particular, we evaluate four alternative parallelizations of the Pareto simulated annealing algorithm, in terms of quality of the solutions, and speedup.  相似文献   

20.
In this paper, we address a variant of the vehicle routing problem called the vehicle routing problem with time windows and multiple routes. It considers that a given vehicle can be assigned to more than one route per planning period. We propose a new exact algorithm for this problem. Our algorithm is iterative and it relies on a pseudo-polynomial network flow model whose nodes represent time instants, and whose arcs represent feasible vehicle routes. This algorithm was tested on a set of benchmark instances from the literature. The computational results show that our method is able to solve more instances than the only other exact method described so far in the literature, and it clearly outperforms this method in terms of computing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号