首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use one of the simplest forms of the K-essence theory and apply it to the anisotropic Bianchi type IX cosmological model, with a barotropic perfect fluid modeling the usual matter content. We show that the most important contribution of the scalar field occurs during a stiff matter phase. Also, we present a canonical quantization procedure of the theory which can be simplified by reinterpreting the scalar field as an exotic part of the total matter content. The solutions to the Wheeler-DeWitt equation were found using the Bohmian formulation Bohm (Phys. Rev. 85(2):166, 1952) of quantum mechanics, employing the amplitude-real-phase approach Moncrief and Ryan (Phys. Rev. D 44:2375, 1991), where the ansatz for the wave function is of the form Ψ(? μ )=χ(?)W(? μ ) \(e^{- S(\ell ^{\mu })},\) , where S is the superpotential function, which plays an important role in solving the Hamilton-Jacobi equation.  相似文献   

2.
This is a review of my work published in the papers of Skakala (JHEP 1201:144, 2012; JHEP 1206:094, 2012) and Chirenti et al. (Phys. Rev. D 86:124008, 2012; Phys. Rev. D 87:044034, 2013). It offers a more detailed discussion of the results than the accounts in those papers, and it links my results to some conclusions recently reached by other authors. It also offers some new arguments supporting the conclusions in the cited articles. The fundamental idea of this work is that the semiclassical quantization of the black hole entropy, as suggested by Bekenstein (Phys. Rev. D 7:2333–2346, 1973), holds (at least) generically for the spacetime horizons. We support this conclusion by two separate arguments: (1) we generalize Bekenstein’s lower bound on the horizon area transition to a much wider class of horizons than only the black-hole horizon, and (2) we obtain the same entropy spectra via the asymptotic quasi-normal frequencies of some particular spherically symmetric multi-horizon spacetimes (in the way proposed by Maggiore (Phys. Rev. Lett. 100:141301, 2008)). The main result of this paper supports the conclusions derived by Kothawalla et al. (Phys. Rev. D 78:104018, 2008) and Kwon and Nam (Class. Quant. Grav. 28:035007, 2011), on the basis of different arguments.  相似文献   

3.
Anumber of years ago, a calculational scheme was introduced by Stubbins [Phys. Rev. A48, 220 (1993)] to compute the energies of both the Hulthén and Yukawa potentials. The method introduces a particular ansatz for solving the Schrödinger equation with screened Coulomb type potentials. In this work, we wish to review the method of Stubbins and to show that it is, in fact, equivalent and a subset of a more systematic (and hence more useful) variational scheme [Zhou et al. Phys. Rev. A51, 3337 (1995)]. This variational approach involves the construction of a basis by taking derivatives of the variational parameters of the system. The eigenvalues of the Hamiltonian matrix are then minimized with respect to these parameters yielding a “best guess” upper bound on the energies.  相似文献   

4.
Recently Muralidharan and Panigrahi (Phys. Rev. A 78, 062333 2008) had shown that using a five-qubit cluster state as quantum channel, it is possible to teleport an arbitrary single-qubit state and an arbitrary two-qubit state. In this paper, we investigate this channel for the teleportation of a special form of three-qubit state.  相似文献   

5.
M V N MURTHY  M BRACK  R K BHADURI 《Pramana》2014,82(6):985-993
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid phase transition found in the MIT experiment [Ku et al, Science 335, 563 (2012)]. The most sensitive data for compressibility and specific heat at phase transition can, however, be fitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.  相似文献   

6.
A new application of six-qubit entangled state introduced by Chen et al. (Phys. Rev. A 74, 032324, 2006) is studied for the bidirectional quantum controlled teleportation. In our scheme, a six-qubit entangled state is shared by Alice, Bob and Charlie, Alice and Bob can transmit simultaneously an arbitrary single-qubit state to each other under the control of the supervisor Charlie.  相似文献   

7.
The main purpose of this paper is to explore the solution of Exact Kantowski-Sach cosmological models by using the Brans Dicke Theory of gravitation in the background of anisotropic dark energy. In order to obtain different physically variable models of the universe we have assumed the special law of variation of Hubbles parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) which yields constant deceleration parameter and power law relation between average scale factor R and scalar field f, which has already been used by Johri and Desikan in RW Brans Dicke models. Some physical and geometrical consequences of the models have been carried out by using some physical quantities.  相似文献   

8.
Recently, Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) presented the concrete representation of density matrix of symmetric quantum states . Moreover , according to this concrete representation of the density matrix for symmetric quantum states, Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) have established Theorem 4.1. In this Comment, we would like to point out that Theorem 4.1 given by Li et al. (Int. J. Theor. Phys. 53(9), 2923–2930 (2014)) is incorrect in general.  相似文献   

9.
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput. 189, 271 (2007); Li et al, Appl. Math. Comput. 175, 61 (2006)).  相似文献   

10.
A new integral relationship between the fluctuations b(r, t) of a magnetic field and its mean B 0(r, t) is derived for the steady-state magnetic field in a turbulent medium. This formula provides the estimate 〈b?curlb〉=?B 0?curlB 0. Simultaneously, the coefficient of amplification of the mean magnetic field α effect) is obtained: α=(η+β)B 0? curlB 0/B 0 2 . The formula for α allows for a decrease in this coefficient owing to the back action of the magnetic field on the turbulent velocity field. It is shown that the Zel’dovich’s estimate 〈 b 2〉?β/η B 0 2 for two-dimensional turbulence holds for magnetic fields at the instant the fluctuations 〈a 2〉 of the vector potential, rather than 〈b 2〉, reach a maximum. Here, η and β are the ohmic (molecular) and turbulent diffusion coefficients, respectively. This estimate is refined with allowance made for the fact that the condition for diffusion approximation itself relates the β, b, and B 0 quantities to each other.  相似文献   

11.
Recently, Ho?ava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Ho?ava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the \({\phi _{4}^{4}}\) -theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.  相似文献   

12.
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by $$H = - J\sum\limits_{\left\langle {x,y} \right\rangle } {\sigma _3 (x)\sigma _3 (y) - \sum\limits_x {h(x)\sigma _1 (x)} } $$ whereJ>0,x,y∈Z d, σ1, σ3 are the usual Pauli spin 1/2 matrices, andh={h(x),x∈Z d} are independent identically distributed random variables. We consider the ground state correlation function 〈σ3(x3(y)〉 and prove:
  1. Letd be arbitrary. For anym>0 andJ sufficiently small we have, for almost every choice of the random transverse fieldh and everyxZ d, that $$\left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle \leqq C_{x,h} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x h <∞.
  2. Letd≧2. IfJ is sufficiently large, then, for almost every choice of the random transverse fieldh, the model exhibits long range order, i.e., $$\mathop {\overline {\lim } }\limits_{\left| y \right| \to \infty } \left\langle {\sigma _3 (x)\sigma _3 (y)} \right\rangle > 0$$ for anyxZ d.
  相似文献   

13.
14.
We point out properties of the “perpendicularev mass”, defined in terms of transverse momentap t byM T 2 (ev)=2|p eT | |p vT |?2p eT ·p vT , that make it particularly well suited toW mass and width determinations. We give an analytic expression for its distribution inW production and subsequentWev decay a \(\bar pp\) colliders, accurate to order 〈p WT 2 /M W 2 〉≈1%. A maximum likelihood fit of this formula to the five UA1 events givesM W=80.3 ?3 +6 GeV.  相似文献   

15.
It is shown that the basic electrodynamical conservation laws are unaffected by the presence in free space of the photomagneton of light, $\hat B^{\left( 3 \right)} = B^{\left( 0 \right)} \hat J/\rlap{--} h$ , the fundamental photon property responsible for magnetization by light. The expectation value $B^{\left( 3 \right)} = \left\langle {\hat B^{\left( 3 \right)} } \right\rangle $ does not affect the Poynting vector, so that it does not contribute to electromagnetic flux density. The electromagnetic energy density can be expressed in terms ofB (3) through the equation $$\rlap{--} h\omega = \frac{1}{{\mu _0 }}\smallint B^{\left( 3 \right)} \cdot B^{\left( 3 \right) * } dV.$$ When light magnetizes matter, the unitB (3) of magnetic flux density per photon is transferred from light to matter. This is equivalent to an elastic transfer of angular momentum. Experimental indications for the existence ofB (3) are discussed.  相似文献   

16.
Resonant dislocation motions in NaCl(Ca) crystals under the simultaneous action of the Earth’s magnetic field B Earth (~66 μT) and a pulsed pump field $\tilde B$ of sufficient amplitude $\tilde B_m $ and certain duration τ have been detected and studied. The measured dislocation path peaks l(τ) have a maximum at τ = τ r ≈ 0.53 μs. The resonance criterion has been found to be the ordinary EPR condition in which the g-factor is close to 2 and the optimum inverse pulse duration τ r ?1 is used instead of the harmonic pump field frequency ν r . The largest peak l(τ) height is reached at mutually orthogonal dislocation (L) and magnetic field (B Earth and $\tilde B$ ) orientations. Pulsed field rotation to the position $\tilde B$ B Earth significantly decreases but does not “kill” the effect. For dislocations parallel to the Earth’s field (LB Earth), the resonance almost disappears even at $\tilde B$ B Earth. In the optimum geometry of experiments, as the pump field amplitude $\tilde B_m $ decreases from 17.6 to 10 μT, the path peak height l r = l r ) decreases only by 7.5%, remaining at the level of l r ~ 102 μm, and at a $\tilde B_m $ further fall-off to 4 μT, it rapidly decreases to background values. In this case, the relative density of mobile dislocations similarly decreases from ~90 to 40%. Possible physical mechanisms of the observed effect have been discussed.  相似文献   

17.
We introduce the notions of the contiguity and entirely separability for two sequences of states on von Neumann algebras. The ultraproducts technique allows us to reduce the study of the contiguity to investigation of the equivalence for two states. Here we apply the Ocneanu ultraproduct and the Groh–Raynaud ultraproduct (see Ocneanu (1985), Groh (J. Operator Theory, 11, 2, 395–404 1984), Raynaud (J. Operator Theory, 48, 1, 41–68, 2002), Ando and Haagerup (J. Funct. Anal., 266, 12, 6842–6913, 2014)), as well as the technique developed in Mushtari and Haliullin (Lobachevskii J. Math., 35, 2, 138–146, 2014).  相似文献   

18.
We construct explicit Darboux transformations for a generalized Schrödinger-type equation with energy-dependent potential, a special case of which is the stationary Klein–Gordon equation. Our results complement and generalize former findings (Lin et al., Phys Lett A 362:212–214, 2007).  相似文献   

19.
Dirac oscillator subjects to an external magnetic field is re-examined. We show that this model can be mapped onto different quantum optics models if one insists to introduce two kinds of phonons which associate with the excitations of Dirac oscillator and magnetic field respectively. The conclusion about chirality quantum phase transition in the paper “Chirality quantum phase transition in the Dirac oscillator” (Bermudez et al. Phys. Rev. A, 77, 063815 2008) is only valid for a specific mapped quantum optics models rather than the Dirac oscillator itself. Thus, the conclusions about chirality quantum phase transitions in this paper are not universal.  相似文献   

20.
The wave and scattering operators for the equation $$\left( {\square + m^2 } \right)\varphi + \lambda \varphi ^2 = 0$$ withm>0 and λ>0 on four-dimensional Minkowski space are analytic on the space of finite-energy Cauchy data, i.e.L 2 1 (R 3)⊕L 2(R 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号