首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper, we examine the effect of a slight material imperfection on the deformation field in an otherwise homogeneous body subjected to a plane bi-axial stretch at infinity. Both hyper-elastic and hypo-elastic materials are considered, with the constitutive equations assumed to be such that the governing equilibrium equations lose ellipticity at some strain level. A straightforward regular perturbation analysis is performed and attention is focussed on the features of the first order terms. It is found that the effect of the imperfection is negligible at small values of the applied load. As the load increases, the imperfection more or less abruptly gets “activated” and causes a rapid concentration of strain within certain narrow bands—shear bands—passing through the imperfection. In order to estimate the accuracy of the linearized analysis, a finite element solution of the nonlinear problem is also carried out and results are compared.  相似文献   

2.
The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned–clamped or clamped–pinned boundary conditions, where “pinned” is an abbreviation for “simply supported”. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods — the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped–pinned systems and positive damping of the pinned–clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.  相似文献   

3.
“Geomechatronics” is a technical field in which “Geotechniques” is fused with “Mechatronics” that is the technical field to promote the automatic control of machines by using the electronics. In the field of “Geomechatronics”, a construction machine, which treats geotechnical materials such as soil and rock, automatically evaluates the properties and conditions of the ground and determines the optimum controlling method of itself for the ground with the base of the machine–ground interaction. Some researches for practical use in the field of geomechatronics are introduced, and then the progressing view of this research and technical filed is explained in this paper.  相似文献   

4.
A mixed Lagrange finite element technique is used to solve the Maxwell equations in the magneto-hydrodynamic (MHD) limit in an hybrid domain composed of vacuum and conducting regions. The originality of the approach is that no artificial boundary condition is enforced at the interface between the conducting and the insulating regions and the non-conducting medium is not approximated by a weakly conducting medium as is frequently done in the literature. As a first evaluation of the performance of the method, we study two-dimensional (2D) configurations, where the flow streamlines of the conducting fluid are planar, i.e., invariant in one direction, and either the magnetic field (“magnetic scalar” case) or the electric field (“electric scalar” case) is parallel to the invariant direction. Induction heating, eddy current generation, and magnetic field stretching are investigated showing the usefulness of finite element methods to solve magneto-dynamical problems with complex insulating boundaries.  相似文献   

5.
Green's functions for the field variables of a complete sphere subjected to normal surface traction are obtained with “free space” properties. Further, self-equilibrated singular solutions of the variables associated with tangentially applied point loads and concentrated surface moments are constructed. The solution formulae are derived within the framework of the improved theory of thin shells and thus incorporate the effect of transverse shear in the equilibrium of the shell element. Despite the complex character of the solution, expressed in terms of complex Legendre functions, the closed form of it reveals the effects of the new assumptions (presence of shear strains) onto the singular behavior of the associated kernels. Numerical results for the field variables demonstrate the differences between the two theories, classical and improved.  相似文献   

6.
A liquid film falling between horizontal tubes is known to take the form of droplets, jets or sheets, depending on the liquid flow rate; the form of the flow is the so-called “falling-film mode”. Although previously neglected in studies of mode transition, a countercurrent gas flow often exists in falling-film heat exchangers, and its effect on the liquid flow might be important: it could impact the flow regime, lead to local “dryout,” and decrease the heat transfer rate. Experiments are conducted to explore the effects of a countercurrent gas flow and liquid feeding length on falling-film mode transitions for a liquid flowing over horizontal tubes. The effects on mode transition are shown to depend on fluid properties and are explained in terms of unsteadiness and film thickness. In general, transition hysteresis is reduced with an increasing gas velocity. A correlation is developed to predict the countercurrent gas flow effects on falling-film mode transitions. The liquid feeding length can affect mode transitions in quiescent surroundings and when a countercurrent gas flow imposed.  相似文献   

7.
This paper develops a yaw dynamic model for a farm tractor with a hitched implement, which can be used to understand the effect of tractor handling characteristics for design applications and for new automated steering control systems. Dynamic equations which use a tire-like model to capture the characteristics of the implement are found to adequately describe the tractor implement yaw dynamics. This model is termed the “3-wheeled” Bicycle Model since it uses an additional wheel (from the traditional bicycle model used to capture lateral dynamics of passenger vehicles) to account for the implement forces. The model only includes effects of lateral forces as it neglects differential longitudinal or draft forces between inner and outer sides of the vehicle. Experiments are taken to verify the hitch model using a three-dimensional force dynamometer. This data shows the implement forces are indeed proportional to lateral velocity and that differential draft forces can be neglected as derived in the “3-wheeled” Bicycle Model. Steady state and dynamic steering data are used for implements at varying depths and speeds to quantify the variation in the hitch loading. The dynamic data is used to form empirical transfer function estimates (ETFEs) of the implements and depths in order to determine the coefficients used in the “3-wheeled” Bicycle Model. Changes in a single parameter, called the hitch cornering stiffness, can capture the various implement configurations. Finally, a model that includes front wheel drive forces is derived. Experiments are taken which provide a preliminary look into the effect of four-wheel drive traction forces, and show a difference with two-wheel versus four-wheel drive, on the yaw dynamics of a tractor with the hitched implement.  相似文献   

8.
Effect of gravity on the vibration of vertical cantilevers   总被引:1,自引:0,他引:1  
The free vibration of a vertically-oriented, thin, prismatic cantilever is influenced by weight. That is, the natural frequencies (and to a lesser extent, mode shapes) are affected by the application of a linearly varying axial load. A beam with an “upward” orientation, i.e., with the free end above the clamped end, will experience a de-stiffening effect, up to the point of self-weight buckling (at zero effective stiffness). A beam in a “downward” orientation will be stiffened by the weight of the beam. This technical note describes some simple experiments on very slender strips and their (vertical) orientation and shows a close correlation with theory.  相似文献   

9.
An “incompressible fluid” model in gas dynamics is developed in the linear approximation. Using the dissipative relaxation time as a characteristic scale, we arrive at another form of the dimensionless Boltzmann equation. In the limiting case of small Knudsen numbers an approximate solution is obtained in the form of a Hilbert multiple-scale asymptotic expansion. It is revealed that for slow, weakly nonisothermal processes the asymptotic expansion for the linearized Boltzmann equation leads in a first stage to equations for the velocity, pressure and temperature that do not contain the density (quasi-incompressible approximation). The density depends on the temperature and can, if necessary, be found from the equation of state. The next-approximation equations contain the Burnett effects, the velocity calculation being reduced to the general problem of finding a vector field from a given divergence and rotation. With reference to a simple case of the heating of a stationary gas in a half-space it is shown that the temperature establishment process is accompanied by gas flow from the wall.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 170–178.Original Russian Text Copyright © 2005 by Chekmarev.  相似文献   

10.
In this paper an anisotropic strain-gradient dependent theory of elasticity is exploited, which contains both volumetric and surface energy gradient dependent terms. The theory is applied to the solution of the mode-III crack problem and is extending previous results by Aifantis and co-workers. The two boundary value problems corresponding to the “unclamped” and “clamped” crack tips, respectively, are solved analytically. It turns out that the first problem is physically questionable for some values of the surface energy parameter, whereas the second boundary value problem is leading to a cusping crack, which is consistent with Barenblatt's theory without the incorporation of artificial assumptions.  相似文献   

11.
This paper presents new bounds for heterogeneous plates which are similar to the well-known Hashin–Shtrikman bounds, but take into account plate boundary conditions. The Hashin–Shtrikman variational principle is used with a self-adjoint Green-operator with traction-free boundary conditions proposed by the authors. This variational formulation enables to derive lower and upper bounds for the effective in-plane and out-of-plane elastic properties of the plate. Two applications of the general theory are considered: first, in-plane invariant polarization fields are used to recover the “first-order” bounds proposed by Kolpakov [Kolpakov, A.G., 1999. Variational principles for stiffnesses of a non-homogeneous plate. J. Meth. Phys. Solids 47, 2075–2092] for general heterogeneous plates; next, “second-order bounds” for n-phase plates whose constituents are statistically homogeneous in the in-plane directions are obtained. The results related to a two-phase material made of elastic isotropic materials are shown. The “second-order” bounds for the plate elastic properties are compared with the plate properties of homogeneous plates made of materials having an elasticity tensor computed from “second-order” Hashin–Shtrikman bounds in an infinite domain.  相似文献   

12.
A usual class of phenomenological “1 − d” damage models is revisited: starting from experimental observations showing that the Young’s and tangent moduli evolve linearly during a compression test on concrete, an appropriate expression for the damage threshold is obtained, which differs from the usual ones. The linear variation of the moduli with respect to the strain variation allows to simplify the incremental equilibrium equations and to improve the accuracy of the simulation.  相似文献   

13.
The derivation of the overall behaviour of nonlinear viscoelastic (or rate-dependent elastoplastic) heterogeneous materials requires a linearisation of the constitutive equations around uniform per phase stress (or strain) histories. The resulting Linear Comparison Material (LCM) has to be linear thermoviscoelastic to fully retain the viscoelastic nature of phase interactions. Instead of the exact treatment of this LCM (i.e., correspondence principle and inverse Laplace transforms) as proposed by the “classical” affine formulation, an approximate treatment is proposed here. First considering Maxwellian behaviour, comparisons for a single phase as well as for two-phase materials (with “parallel” and disordered morphologies) show that the “direct inversion method” of Laplace transforms, initially proposed by Schapery (1962), has to be adapted to fit correctly exact responses to creep loading while a more general method is proposed for other loading paths. When applied to nonlinear viscoelastic heterogeneous materials, this approximate inversion method gives rise to a new formulation which is consistent with the classical affine one for the steady-state regimes. In the transient regime, it leads to a significantly more efficient numerical resolution, the LCM associated to the step by step procedure being no more thermoviscoelastic but thermoelastic. Various comparisons for nonlinear viscoelastic polycrystals responses to creep as well as relaxation loadings show that this “quasi-elastic” formulation yields results very close to classical affine ones, even for high contrasts.  相似文献   

14.
This paper returns to, and addresses, the question of identifying the nature of aerodynamic admittance in relation to extended-span bridges in wind. Theoretical formulations for the sectional aerodynamic forces acting upon the deck girder of a long-span bridge have conventionally been composed of the sum of two kinds of terms: aeroelastic terms and buffeting terms. The former employ frequency-dependent coefficients (“flutter derivatives”) associated with sinusoidal displacements of the structure, while the latter have typically been expressed in quasi-static terms with fixed lift, drag and moment coefficients. This inconsistency of formulation has required that at some point the buffeting terms, functions of gust velocity, be adjusted to a more compatible form through the introduction of the so-called aerodynamic admittance factors that are frequency-dependent. The present paper identifies a form of these several section-force factors as functions of the flutter derivatives themselves.  相似文献   

15.
During loading of a crack in mode III the crack surfaces in contact slide against each other giving rise to friction, abrasion and mutual support, thereby reducing the effective stress at the crack tip (“sliding mode crack closure”). This phenomenon was investigated in a high strength steel (AISI 4340) and in a low strength steel (AISI C1018) in circumferentially notched specimens under pure cyclic torsion and combined loading (cyclic torsion plus static axial load). The influence of sliding mode crack closure on fatigue crack propagation is shown and “true” crack growth values (without the sliding mode crack closure influence) are determined on the basis of an extrapolation procedure. Explanations are given for causes of the various fracture modes observed, such as “factory roof” fracture, macroscopically flat mode III fracture and “lamella” fracture. Finally the scientific and technical importance of sliding mode crack closure is demonstrated.  相似文献   

16.
Shear banding (SB) is manifested by the abrupt “demixing” of the flow into regions of high and low shear rate. In this paper, we first relate analytically the rheological parameters of the fluid with the range of shear rates and stresses of SB occurrence. For this, we accept that the origin of shear banding is constitutive, and adopt a non-linear viscoelastic expression able to accommodate the double-valuedness of the stress with flow intensity, under certain conditions. We then implement the model for the case of pressure driven flow through a cylindrical pipe; we derive approximate expressions for the velocity profile in the two-banded regions (core and outer annular), the overall throughput in the presence or absence of “spurt”, and the radial location limits of the shear rate discontinuity.  相似文献   

17.
Velocity effect of vehicle rolling resistance in sand   总被引:1,自引:0,他引:1  
  相似文献   

18.
After a general introduction the papers presented at Session IV of the 9th International ISTVS Conference concerned with “Vehicle and Machinery Design”, are discussed in groups, based on field of application. Special attention is paid to instrumentation and implementation of measurements.  相似文献   

19.
We use linear elasticity to study a transversely isotropic (or specially orthotropic), semiinfinite slab in plane strain, free of traction on its faces and at infinity and subject to edge loads or displacements that produce stresses and displacements that decay in the axial direction. The governing equations (which are identical to those for a strip in plane stress, free of traction on its long sides and at infinity, and subject to tractions or displacements on its short side) are reduced, in the standard way. to a fourth-order partial differential equation with boundary conditions for a dimensionless Airy stress function ƒ. We study the asymptotic solutions to this equation for four sets of end conditions—traction, mixed (two), displacement—as g3, the ratio of the shear modulus to the geometric mean of the axial and transverse extensional moduli, approaches zero. In all cases, the solutions for ƒ consist of a “wide” boundary layer that decays slowly in the axial direction (over a distance that is long compared to the width of the strip) plus a “narrow” boundary layer that decays rapidly in the axial direction (over a distance that is short compared to the width of the strip). Moreover, we find that the narrow boundary layer has a “sinuous” part that varies rapidly in the transverse direction, but which, to lowest order, does not enter the boundary conditions nor affect the transverse normal stress or the displacements. Because the exact biorthogonality condition for the cigenfunctions associated with ƒ can be replaced by simpler orthogonality conditions in the limit as →b 0, we are able to obtain, to lowest order, explicit formulae for the coeflicients in the eigenfunction expansions of ƒ for the four different end conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号