首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
用Lattice Boltzmann方法模拟方柱绕流   总被引:7,自引:0,他引:7  
用Lattice Boltzmann方法模拟了两种情况下的方柱绕流:方柱位于流场的边壁和方柱位于流场的中央。在第1情况中,分析了流场的流线、速度矢量分布以及方柱后面绕流形成的回流区长度随Reynolds数的变化曲线;在第2种情况中,除了给出稳定时流场的流线、速度矢量分布和压力分布以外,还模拟了Re=150时方柱后面形成的周期旋涡现象。两种情况下的计算结果与其他文献中的计算数值和试验数据是一致的。  相似文献   

2.
Lattice Boltzmann方法理论和应用的新进展   总被引:6,自引:0,他引:6  
与传统的计算流体动力学方法(如FDM,FEM等)相比,Lattice Boltzmann方法(LBM)具有算法简单,精度高,压力可以直接求解、能够模拟具有复杂边界条件的问题以及适合于并计算等优点,边界条件处理和提高模拟流场Re的新方法,促进了LBM理论的发展和完善,并且在二维和三维的水力学,多相流,热传导以及对流-扩散问题的模拟中获得了广泛的应用。  相似文献   

3.
基于Lattice Boltzmann方法的方柱绕流模拟   总被引:1,自引:0,他引:1  
从分子动力论出发,探讨了模拟不可压缩粘性流动的Lattice Boltzmann(LB)方法.根据粒子平衡分布函数和非平衡反弹思想,提出了高效的出口边界条件处理格式.结合区域分裂技术设计了适合集群计算机运算的LB并行算法,并用C++程序语言开发了LB并行计算程序.通过对不同雷诺数时的方柱绕流模拟,验证了本文方法的有效性,同时详细分析了雷诺数对方柱绕流特性的影响.  相似文献   

4.
用格子Boltzmann方法计算来流为水平剪切流的方柱绕流问题, 得到了在不同速度梯度条件下方柱绕流的流线和等涡线图. 发现在圆柱尾部形成两排涡, 当来流速度梯度较大时, 两排涡有很大的不同. 计算结果表明, 用格子Boltzmann方法计算剪切流的方柱绕流问题是可行的, 计算结果与理论分析相符.  相似文献   

5.
利用格子Boltzmann方法,模拟电磁场中的圆柱绕流过程,研究电磁力对圆柱所受阻力的影响,并分析了曲线边界处理方法和曲线边界受力的计算方法;计算得到了不同强度的电磁力作用下圆柱绕流的流线、等涡线及阻力系数.结果表明,电磁力能改变圆柱绕流的边界层结构,延缓边界层的分离,同时还能有效抑制旋涡的脱落,减少阻力.  相似文献   

6.
为了研究低雷诺数下钝体绕流噪声,提出一种混合声学预报方法.采用声扰动方程(APEs)结合浸入边界算法(IBM)对矩形柱绕流噪声进行模拟研究.首先通过方柱绕流模型对混合方法和边界条件进行验证,然后讨论不同迎角下方柱的流噪声特性及0°迎角下矩形柱长宽比对声场的影响规律.结果表明:方柱绕流仿真结果与文献计算值符合较好,说明本文方法有效;随着迎角增加,声压级和声传播角相应变化,30°迎角下声压级较大;矩形柱的辐射噪声低于方柱辐射噪声,并随着长宽比增大逐渐减小,主要是因为尾流区形成卡门涡街的位置向下游移动,降低了尾涡强度和升力变化;矩形柱尾涡脱落和升力变化是主要的噪声源.  相似文献   

7.
用格子Boltzmann方法模拟椭圆柱绕流, 研究椭圆柱形状对阻力的影响. 对圆柱绕流问题进行了数值模拟, 阻力系数的数值计算结果与相关文献数值相符. 计算了当Re=200, 椭圆柱纵轴长度不变、 横轴长度逐渐变大时几种不同形状的椭圆柱绕流, 并用插值方法处理了曲线边界, 用动量转换法计算了曲线边界受力. 计算得到了不同形状椭圆柱绕流的流线、 涡线以及阻力系数随横轴/纵轴长度比的变化趋势. 通过分析流线和涡线的变化, 给出了阻力变化的机理.  相似文献   

8.
用lattice Boltzmann方法(LBM)模拟了纵横比(高度与宽度之比)大于1的矩形竖腔内同时存在自然对流和强制对流的混合流动时流场与温度场分布.比较了不同雷诺数(Re)、瑞利数(Ra)下矩形腔的流场分布在不同纵横比时的特点,研究了这些参数值对混合对流换热的影响,提出混合对流存在时Re和Ra对流动和换热的影响可由Richardson数(Ri)综合反映,并得到在不同纵横比时平均Nusselt数(Nu)随Ra和Re的变化关系式.与常用的LBGK模型不同,用了LB力矩模型.  相似文献   

9.
用Lattice Boltzmann方法计算流体对曲线边界的作用力   总被引:9,自引:5,他引:4  
通过分析格子Boltzmann方法中边界受力的计算方法, 研究了两种用LB方法计算边界受力的方法——动量转换法和应力积分法, 其中动量转换法较为可靠、 准确, 且易于执行. 应用LB方法模拟了圆柱绕流问题, 并计算出圆柱的阻力系数. 通过模拟凹坑表面的层流流动, 发现随着Re数的增大, 凹坑表面的阻力系数逐渐接近平 板的阻力系数.  相似文献   

10.
采用常温下和高温下混凝土矩形柱的试验结果,验证数值模拟程序RCSSCF的有效性,并分析各主要参数对规定的升温过程下混凝土矩形柱耐火极限的影响规律.针对不同荷载比、计算长度、截面尺寸、荷载偏心率、配筋率和荷载角共9 000种工况,进行四面受火时混凝土矩形柱的高温反应分析.通过对大量计算结果的整理和分析,给出了该类构件耐火极限的实用计算公式.  相似文献   

11.
Lattice Boltzmann Method(LBM)是一种近年来发展的一种数值方法。它具有并行效率高,边界处理简单的特点。本文采用一种能对曲线边界进行较好处理的方法,用LBM对Re=100圆柱绕流进行了计算,计算结果和经典结果一致。进一步,对柱群间复杂流场做了模拟,结果表明,此方法在处理复杂边界是有效的,并且具有较好的并行效率。  相似文献   

12.
数值模拟放置附属圆柱的主圆柱绕流   总被引:1,自引:0,他引:1  
利用格子Boltzmann方法, 对主圆柱尾流区域内放置附属圆柱的绕流进行数值模拟. 结果表明: 放置单个附属圆柱时, 主圆柱所受阻力减小, 阻力
系数发生周期性改变; 放置两个附属圆柱的减阻效果更好.  相似文献   

13.
非均匀格子Boltzmann方法模拟方柱绕流   总被引:5,自引:0,他引:5  
应用非均匀格子Boltzmann方法对方柱绕流的三种情况进行详细数值模拟,在第1种情况中,方柱位于流场中央,模拟了卡门涡街现象,给出了斯特鲁哈数随雷诺数变化曲线;在第2种情况中,方柱位于流场壁面,分析了雷诺数对方柱后回流区的影响;在第3种情况中,两方柱并列在流场中央,考察了方柱间距对流场的影响。  相似文献   

14.
基于LBM和FVM的方柱绕流特性对比分析   总被引:1,自引:1,他引:0  
基于粘性流体理论,本文分别采用格子Boltzmann方法(LBM)和有限体积法(FVM)建立了粘性流场中方柱绕流模型,探究LBM在非光滑曲面钝体绕流方面的应用,并结合FVM进行对比分析。在FVM模型中,采用局部加密的方法对钝体边界进行处理,而在LBM模型中,除了传统的Half-way边界处理方法,还结合了拐角边界处理方法。为获得较好的可对比数据,根据已发表文献中的理论及UDF编译码技术分别对两模型的进出口边界条件进行了讨论和设置。对比分析了两模型下的速度云图以及获得的升、阻力系数,Strouhal数。结果发现方柱上游压力不受涡脱落影响,雷诺数对其影响也较小;两种方法下的速度、无量纲参数吻合较好,但两者最适进出口边界不同,且相同条件下,LBM比FVM数值模拟能更快达到稳定状态。 关键词 方柱绕流 格子Boltzmann方法 有限体积法 对比分析  相似文献   

15.
采用反弹-镜面反射(BSR)组合边界格式的格子Boltzmann方法(LBM)对气体微尺度流动进行了模拟计算,模拟结果能够与已有的研究结果较好吻合.分析了BSR组合边界格式中比例系数的选取与Knudsen数的关系,研究结果表明,当Kn∈(002,016)时,比例系数随Knudsen数的增加呈现先减小后增大的趋势,当Knudsen数约在0055~0072范围内时,比例系数有最小值.在此基础上,对BSR组合边界格式中的比例系数进行了修正,明显改善了数值计算的结果,为微尺度气体流动的LBM模拟提供了参考.  相似文献   

16.
用格子Boltzmann方法模拟运动平板附近的圆柱绕流问题, 给出一种精确确定临界间隙率的综合判定方法, 并分析了流场特性的内在本质以及各种物理现象之间的联系. 将圆柱置于运动平板上方, 平板运动速度与入口处均匀来流的速度保持一致, 模拟的雷诺数为1 000. 定义间隙率为G/D, 其中G为圆柱边界到运动平板的最小距离, D为圆柱的直径. 结果表明: 当间隙率取值范围不同时, 流场特性有较大差异; 与孤立圆柱相比, 本文中的升力和阻力有明显增加, 并且旋涡脱落也受到平板抑制.  相似文献   

17.
利用格子波尔兹曼方法模拟了波形板复杂流道的流场,计算了流场的状态。采用的是十三点格子波尔兹曼模型,边界处理成无滑移、反弹边界。结果表明,该模型与其他数值计算方法相比,能更方便地处理边界,因此能有效、精确和稳定地模拟复杂流动现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号