首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perturbation theory on optical ac Stark effect is applied to study the NMR spectroscopy in paramagnetic systems. Application of the circularly or linearly polarized optical field would lead to shifts in the NMR lines, which is proportional to the laser intensity and the induced polarizability tensors by hyperfine interaction. The induced shift for 193Ir NMR spectrum of [IrBrg]2- is expected to be of the order of 1-10 Hz as resonance is approached with light intensity 10 W·cm-2. For the supersonic molecular beam samples 193IrC, the laser-induced NMR shift is estimated to be as large as 1-10 MHz near resonance.  相似文献   

2.
Binuclear nitrosopalladium complexes Pd2(μ-COOR)22-CH2C6H4NO)2 (R = Me, CF3, or Ph) were studied by ESR spectroscopy. Analysis of parameters of ESR spectra of the polycrystalline samples and their toluene solutions suggests partial izomerization of the nitroso ligands to the nitroxide form to result in the oxidation of palladium(II) to palladium(III). __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1746–1751, August, 2005.  相似文献   

3.
Experimental investigation and theoretical simulation of the unusual phenomenon of multiple broadening and narrowing of NMR signals due to the temperature variation of a solution of the stereochemically non-rigid heterospin Ni2+ complex with stable nitroxide were performed. The investigation of the temperature dependence of the NMR signals of stereochemically non-rigid heterospin systems can be used for choosing conditions for growing heterospin single crystals containing molecules in a definite conformation.  相似文献   

4.
5.
The detailed analysis of the 1H NMR hyperfine shifts according to the model-free methods shows that the semi-rigid monometallic complexes [Ln(L)(NO3)3] (Ln = Eu-Yb) are isostructural in solution. The associated separation of contact and pseudo-contact contributions to the hyperfine NMR shifts in each rhombic lanthanide complex at room temperature provides paramagnetic susceptibility tensors whose principal magnetic axes match the expected symmetry requirements. Moreover, both axial (Delta chi(ax)) and rhombic (Delta chi(rh)) paramagnetic anisotropies display satisfactory linear dependence on Bleaney's factors, a correlation predicted by the approximate high-temperature expansion of the magnetic susceptibility limited to T(-2). Consequently, the simple, and chemically attracting NMR model-free methods are not limited to axial systems, and can be safely used for the investigation of the solution structures of any lanthanide complexes. Molecular-based structural criteria for the reliable estimation of paramagnetic susceptibility tensors by NMR are discussed, together with the assignment of the labels of the crystal-field and magnetic axes within Bleaney's approach.  相似文献   

6.
In the present paper, the peculiarities of NMR phenomenon in paramagnetic systems are reported. Specifics of detection of high‐resolution NMR spectra transformed by superfine interaction are discussed. Concrete examples illustrate the modern possibilities of NMR application for the study of structure and dynamics of the molecular (multielectron) systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
(1)H and (13)C NMR data for N-substituted morpholines 1-20 were measured using 1D (DEPT, 1D NOE difference) and 2D NMR spectroscopic methods including (1)H-(1)H COSY, long-range (1)H-(1)H COSY, NOESY, gHMBC and gHMQC experiments. At room temperature the (1)H NMR spectra of protonated compounds 2 and 9 show the chair conformation for the morpholine ring. Spin-spin coupling constants were deduced from the resolution-enhanced proton spectra.  相似文献   

8.
19F and 1H NMR spectra of halocarbons   总被引:1,自引:0,他引:1  
19F NMR chemical shifts and coupling constants are reported for 215 compounds. For 77 of these compounds, 1H NMR spectral data are also given. Long-range couplings, including 8J(F,F) and 5J(F,H), are reported. The complexity of halocarbon spectra owing to the presence of rotational isomers, asymmetric centers, long-range couplings, and chlorine isotope effects are illustrated, and the methods used for analyzing such complex spectra are briefly discussed.  相似文献   

9.
A structural study of metal ion adducts of a new anthracycline disaccharide (MEN 10755) was undertaken. The trivalent lanthanide ion Yb(III) was employed as paramagnetic structural probe for 1H NMR analysis. Through a comparative spectroscopic investigation [UV–Vis absorption and circular dichroism (CD), 1H NMR], the isomorphism between its adducts with lanthanide ions (La3+, Yb3+, Lu3+) and calcium (one of the most representative biological cations) was verified. Solution behavior and cation binding were also investigated by means of optical titrations. In agreement with other anthracyclines, MEN 10755 was found to dimerize in aqueous solution [estimated Kdim (pH7.6) = 7 × 103], but not in methanol. A prevalent complex Yb3+–MEN 10755 (1:1) in both buffered aqueous and methanolic solutions (estimated Kcompl = 2100 M ?1) was observed. A numerical analysis of the LIR and LIS 1H NMR literature data for a similar adduct (Yb3+–daunorubicin) was performed using newly developed software, PERSEUS (Paramagnetic Enhanced Relaxation and Shifts for Eliciting Ultimate Structures), and the structure of the complex was characterized, locating definitely the binding site on the O‐11, O‐12 quinone system. The components of the anisotropic part of the magnetic susceptibility tensor were also determined. Finally, a study of the time‐dependent formation of an Yb3+–MEN 10755 complex through 1H NMR, UV–Vis CD and induced NIR CD was carried out. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Magnetization, optical absorbance, and 19F NMR spectra of Nafion transparent films as received and doped with Mn2+, Co2+, Fe2+, and Fe3+ ions with and without treatment in 1H‐1,2,4‐triazole (trz) have been studied. Doping of Nafion with Fe2+ and Co2+ and their bridging to nitrogen of triazole yields a hybrid self‐assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high‐spin (HS) and low‐spin (LS) states in Nafion‐Fe2+‐trz and Nafion‐Co2+‐trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS ? LS, ~220 K, observed for Nafion‐Fe2+‐trz has a rate of ~6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe2+ materials. Selective response of 19F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of 19F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt‐Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self‐assembling magnetically and optically active nanoscale networks. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 129–138, 2012  相似文献   

11.
Metalloproteins are a category of biomolecules in which the metal site is usually the locus of activity or function. In many cases, the metal ions are paramagnetic or have accessible paramagnetic states, many of which can be studied using NMR spectroscopy. Extracting useful information from 1H NMR spectra of highly paramagnetic proteins can be difficult because the paramagnetism leads to large resonance shifts (~400 ppm), extremely broad lines, extreme baseline nonlinearity, and peak shape distortion. It is demonstrated that employing polychromatic and adiabatic shaped pulses in simple pulse sequences, then combining existing sequences, leads to significant spectral improvement for highly paramagnetic proteins. These sequences employ existing technology, with available hardware, and are of short duration to accommodate short nuclear T1 and T2. They are shown to display uniform excitation over large spectral widths (~75 kHz), accommodate high repetition rates, produce flat baselines over 75 kHz while maintaining peak shape fidelity, and can be used to reduce spectral dynamic range. High‐spin (S = 5/2) metmyoglobin, a prototypical highly paramagnetic protein, was used as the test molecule. The resulting one‐dimensional (1D) pulse sequences combine shaped pulses with super‐water elimination Fourier transform, which can be further combined with paramagnetic spectroscopy to give shaped pulses with super‐water elimination Fourier transform–paramagnetic spectroscopy. These sequences require, at most, direct current offset correction and minimal phasing. The performance of these sequences in simple 1H 1D, 1D NOE, and two‐dimensional NOESY experiments is demonstrated for metmyoglobin and Paracoccus denitrificans Co2+‐amicyanin (S = 3/2), and employed to make new heme hyperfine resonance assignments for high‐spin metBjFixLH151–256, the heme sensing domain of Bradyrhizobium japonicum FixL. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A reconsideration of the 1H NMR spectra of cationic transition metal complexes exhibiting the features of cyclophanes on the basis of Mislow's classification of topic groups arrives at the conclusion that the spectral changes triggered by chiral counterions reflect an intracationic diastereotopication of enantiotopic protons rather than the existence of pairs of long‐lived diastereomeric ion pairs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction of acrylic acid—1-vinylimidazole copolymer with CuCl2 in an aqueous medium was investigated by potentiometric titration and UV and ESR spectroscopy. The complex formation involves both the azole units and the carboxy groups. The Cl ions are also incorporated in the inner sphere of the complexes, their removal by dialysis resulting in an increase in the coordination capacity of the carboxylate groups.  相似文献   

14.
Serviceable NMR spectra can, with a few exceptions[1,6], be recorded for paramagnetic complexes in solution. These spectra provide information about the structure of the complexes and the distribution of the unpaired electrons, and hence also about reactive centers in the molecule. The elucidation of intermolecular and intramolecular exchange phenomena, e.g. the determination of ligand exchange rate constants, the determination of rotation barriers, and the detection of contact complexes in solution, or even of occupation equilibria of the electrons, is possible in this way. It can be seen, therefore, that NMR studies on paramagnetic complexes can be a rich source of information.  相似文献   

15.
High‐quality solid‐state 17O (I=5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing VIII (S=1), CuII (S=1/2), and MnIII (S=2) metal centers, the 17O isotropic paramagnetic shifts were found to span a range of more than 10 000 ppm. In several cases, high‐resolution 17O NMR spectra were recorded under very fast magic‐angle spinning (MAS) conditions at 21.1 T. Quantum‐chemical computations using density functional theory (DFT) qualitatively reproduced the experimental 17O hyperfine shift tensors.  相似文献   

16.
Owing to its two unsymmetrical-NH_2 groups sited on different terminals, 2, 6-diaminocaproic acid (lysine) was used as a reactant for synthesizing a novel unsymmetrical Schiff base with salicylaldehyde on one side and ovanillin on the other for the first time. It is a new way to synthesize such a special unsymmetrical Schiff base. It is named "hetero bis-Schiff base" for distinguishing it from others. The synthesis method, formation mechanism as well as twelve new lanthanide complexes with the above ligand are reported and discussed herein. They were characterized by elementary analysis, molar conductivity, IR-spectra and especially by ~1H and ~(13)C NMR spectra. The results obtained may provide a new promising method for synthesizing similar unsymmetrical Schiff bases and their complexes.  相似文献   

17.
Monolithic chromatographic columns for HPLC based on divinylbenzene-styrene both with 1-vinylimidazole and with 4-vinylpyridine are prepared. The monoliths were synthesized in glass tubes with the inner diameter of 2?mm. Texture, hydrodynamic and chromatographic properties of the prepared columns were studied. Linear solvation energy relationships model was applied for the characterization of columns selectivity It is shown that changing the on 1-vinylimidazole or 4-vinylpyridine content in the initial solution allows to change the selectivity of the columns. An examples of small molecules and some proteins separations are presented.  相似文献   

18.
NMR relaxation spectroscopy (RS) is used to examine the molecular structure of paramagnetic bis-diisobutyl dithiophosphinate complexes of lanthanides (by the example of europium and lutetium) with 1,10-phenanthroline in CDCl3 solution. The results obtained are consistent with the results of studying the molecular structure of bis-diisobutyl dithiophosphinate complexes of yttrium with 1,10-phenanthroline in the crystalline phase by XRD.  相似文献   

19.
Some silica-based solids, prepared by the sol/gel method in the presence of high Mn2+ concentrations, have been characterized by the 29Si, 27Al MAS NMR spectra and 29Si T1 measurements. The single-pulse 29Si and 27Al MAS NMR spectra have shown broad spinning sideband patterns that are interpreted in terms of anisotropic bulky magnetic susceptibility (BMS) and dipole-field effects. In the absence of paramagnetic isotropic shifts, the 29Si and 27Al nuclei observed in the single-pulse NMR spectra have been assigned to nuclei remote from paramagnetic centers. It has been demonstrated that the 29Si and 27Al nuclei, which are in the vicinity of the manganese ions, can be detected by the Hahn-echo MAS NMR experiments at different carrier frequencies.  相似文献   

20.
The 15N‐labelled iron dinitrogen complexes trans‐[FeH(N2)(PP)2]+[BPh4]? (PP = dppe, depe, dmpe) and cis‐[FeH(N2)(PP3)]+[BPh4]? were prepared in situ by exchange of unlabelled coordinated dinitrogen with 15N2. 15N NMR chemical shifts and coupling constants are reported. The 15N spectra exhibit separate signals for the metal‐bound and terminal nitrogen atoms of the coordinated N2. The 15N resonances display 15N, 15N coupling as well as 31P, 15N coupling and long‐range 15N, 1H coupling when there is a metal‐bound hydrido ligand. Exchange between free and coordinated dinitrogen was monitored by magnetization transfer between 15N‐labelled sites using an inversion–transfer–recovery experiment. Exchange between the metal‐bound and terminal nitrogen atoms of coordinated N2 was also monitored by magnetization transfer and this could proceed by N2 dissociation or by an intramolecular process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号