首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Solvent gradient operation of simulated moving beds. I. Linear isotherms   总被引:1,自引:0,他引:1  
The simulated moving bed (SMB) is a multi-column chromatographic separation process, which--with respect to the single-column preparative batch process--allows for a continuous separation with larger productivity and smaller solvent consumption at the same time. The benefits of this process have been shown for several different applications in fine chemistry, particularly for the separation of enantiomers. In general, SMBs are operated under isocratic conditions. However, separation performance can be further improved by applying some sort of gradient mode operation, in order to optimize the operating conditions of each individual section of the unit. This can be achieved by tuning the retention behavior of the solutes to be separated along the unit, namely by enforcing weak adsorption conditions in sections 1 and 2, and strong adsorption conditions in sections 3 and 4. This can be achieved by applying a temperature gradient (high temperature in section 1, and low temperature in section 4), a pressure gradient (e.g. in the supercritical SMB, when pressure is high in section 1, and low in section 4), or a solvent gradient, which is the aim of this work. In the solvent gradient mode the mobile phase consists of a mixture of two or more solvents. To different mobile phase compositions corresponds a different retention behavior of the solutes, i.e. different adsorption isotherms. In this work we study a closed loop SMB unit with solvent mixtures of two different compositions entering the unit at the feed and desorbent inlet ports, respectively. Thereby two different mobile phase compositions are established in sections 1 and 2, and sections 3 and 4, respectively. To optimize this process the equilibrium theory design criteria for non-linear SMBs are extended to describe this operation mode. It is shown how the region of separation is derived and how the optimal operating conditions can be found. Finally the solvent gradient mode is compared with the isocratic mode in terms of productivity and solvent consumption.  相似文献   

2.
The solvent composition was adjusted in a theoretical study in order to maximize the efficiency of a simulated moving bed (SMB) process. The isocratic realization of the process as well as the solvent gradient mode were considered. The solvent composition and the flow rates were used as decision variables in a random search optimization algorithm known to be a reliable tool for nonlinear programming problems. The results of the optimization indicate that the optimal composition of the mobile phase depends strongly on the feed concentration. The asymmetry of the internal concentration profiles, which has a negative effect on the separation efficiency, can be partly damped by an increase of the solvent strength. In the cases studied the optimal solvent strength determined for concentrated feed streams is higher than that for diluted ones. Moreover, the optimum is strongly influenced by the value of the selectivity factor and its dependency on the mobile phase composition. Different results were obtained for cases, in which the separation factor increases with increasing the modifier concentration, than for cases, in which the separation factor decreases with increasing the modifier concentration. A similar analysis was performed for a solvent gradient SMB process, in which different solvents are used at the two inlet ports: a weak solvent in the feed stream and a strong solvent in the desorbent stream. Again the optimal mobile phase composition was strongly affected by the type of the isotherms and their non-linearity. The potential of a gradient SMB process in terms of increasing the productivity and reducing the eluent consumption is exemplified.  相似文献   

3.
An optimised coupling of liquid chromatography and fractional crystallisation is suggested for efficient enantioseparation. As a first stage, a chromatographic separation, preferably simulated moving bed (SMB) chromatography, is applied to achieve an enantiomeric enrichment sufficient for a subsequent crystallisation. First results of the experimental and modelling work for the model system (+)-/(-)-mandelic acid in an aqueous solution are described. Chromatographic investigations involve the estimation of adsorption isotherms on a suitable chiral stationary phase and the simulation and optimisation of a corresponding SMB process. From the ternary phase diagram measured for the (+)-/(-)-enantiomer/ solvent system, the conditions required to crystallise a pure enantiomer from an asymmetric mixture can be derived. The productivity gains achievable from the combined process compared to the application of chromatography alone are discussed.  相似文献   

4.
The application of gradients in simulated moving bed (SMB) chromatography has recently attracted interest as a method for further improving the performance of this continuous separation process. One possible implementation of gradients consists in setting the solvent strength in the desorbent stream higher than that in the feed stream. As a result, the components to be separated are more retained in the zones upstream of the feed position and more easily eluted in the zones downstream of the feed position. If a liquid mobile phase is used, gradients can be created by dosing different solvents into the feed and desorbent ports. In a closed-loop gradient SMB arrangement the solvent strength within the unit will depend on the two feed compositions and on the characteristic flow-rates of the process. In this work an equilibrium stage model describing a true moving bed process is used to analyze numerically the main features of a two-step gradient SMB process. The adsorption isotherms are assumed to be always linear under isocratic conditions. The relevant Henry constants depend in a nonlinear manner on the composition of the solvent. Based on numerical simulations the impact of the two inlet solvent compositions is demonstrated in terms of the size and shape of regions of applicable flow-rates. Different strategies of designing the process are discussed and compared with respect to maximizing productivities and minimizing desorbent requirements.  相似文献   

5.
The separation of racemic paroxol, a key precursor of trans‐(?)‐paroxetine, on Chiralpak AD‐H, an amylose‐based chiral stationary phase, by supercritical fluid chromatography was studied. Pulse experiments were investigated using supercritical carbon dioxide modified with methanol (MeOH), ethanol and 2‐propanol at 35°C and 15 MPa. Retention and separation factors were determined under analytical conditions for different mobile phase compositions. Among the modifiers used, MeOH was shown to be the best additive, and 5% v/v of MeOH was the preferable concentration at which selectivity of 1.14 and resolution of 3.0 was obtained. In order to evaluate the potential with respect to preparative separations, the adsorption isotherms of individual enantiomers of paroxol were estimated using the elution by characteristic point method. Isotherm parameters were determined from the overloaded elution profiles that were collected at pressure ranging from 15 to 24 MPa. The isotherms obtained were further validated by comparing experimentally recorded elution profiles with the predictions based on the equilibrium‐dispersive model. The results are important to the process design and optimization of preparative supercritical fluid chromatography application.  相似文献   

6.
The enantioseparation of 1-phenyl-1-propanol through the supercritical fluid-simulated moving bed (SF-SMB) process is studied. Non-linear isotherms were measured on an analytical column, and used together with the triangle theory for SMB design to select operating conditions for the SF-SMB. Experiments were carried out on a pilot-scale SF-SMB plant at conditions that corresponded to the non-linear range of the isotherm. Under conditions of low feed concentration, complete separation (extract purity = 99.5%; raffinate purity = 98.4%) was achieved. Under conditions of larger feed concentration, the best separation corresponded to an extract purity of 98.0% and a raffinate purity of 94.0%, and yielded a productivity of 110 g of racemate per kg stationary phase per day.  相似文献   

7.
Bone morphogenetic protein-2 (BMP-2) is one of the most interesting of the approximately 14 BMPs which belong to the transforming-growth-factor-beta (TGF-beta) superfamily. BMP-2 induces bone formation and thus plays an important role as a pharmaceutical protein. Recently, rhBMP-2 has been produced in form of inactive inclusion bodies in Escherichia coli. After solubilization and renaturation the biologically active dimeric form of rhBMP-2 can be generated. However, inactive monomers of BMP-2 are also formed during the renaturation process which must be separated from the active dimeric BMP-2. The purpose of this paper is to present: (a) results of an experimental study of a chromatographic separation of the monomeric and dimeric forms; and (b) a concept for a continuous counter-current simulated moving bed (SMB) process. The capacity of heparin as stationary phase was estimated for different salt concentrations in the mobile phase. A simulation study of a three-zone SMB process was performed applying a two step salt gradient. The results reveal the potential of the process for the purification of the dimeric BMP-2.  相似文献   

8.
Often there are several chromatographic systems, i.e., combinations of mobile and stationary phases, available to solve a certain separation problem. Essential differences of these chromatographic systems are the separation factors and the efficiencies. For preparative applications in addition also the column saturation capacities and solubility limits are of importance. The impact of all these parameters appears to be rather well understood for conventional overloaded elution chromatography using a single column. In the last years the continuous simulated moving bed (SMB) process was increasingly used as a powerful alternative to batch elution since increased productivities and reduced solvent consumptions could be realised. However, the selection of suitable chromatographic systems is more sophisticated for this process. In this paper five different chromatographic systems capable of separating the enantiomers of mandelic acid are compared based on the achievable productivities using SMB chromatography. For these five systems the adsorption isotherms have been determined experimentally. Subsequently, an analysis of the SMB process was performed numerically using a well-established model.  相似文献   

9.
Simulated moving bed (SMB) is a cost-efficient separation technique that offers high productivity and low solvent consumption. SMB has gained importance in the pharmaceutical and fine chemical industry to perform complex separation tasks. However, an open and challenging problem is the optimal, robust operation of the SMB process. We have developed a control scheme that integrates the optimization and control of the SMB unit. A significant feature of the controller is that only minimal information of the system has to be provided, i.e. the linear adsorption behavior of the mixture to be separated and the average void fraction of the columns. Therefore, a full characterization of the adsorption behavior of the mixture and the columns is no longer required. In this ‘cycle to cycle’ control scheme, the measurements, optimization and control actions are performed once in every cycle. This paper presents simulation results of the control scheme applied to the separation of binary mixtures characterized by generalized Langmuir isotherms. The results are presented and analyzed in the frame of the triangle theory that has been recently extended to encompass these types of isotherms. Besides, online optimum performance of the SMB unit is compared with off-line optimization carried out using genetic algorithm. The results show that the controller fulfills the product and process specifications while operating the SMB unit optimally, regardless of the different types of Langmuir isotherms that the systems exhibit.  相似文献   

10.
Optimization strategy for simulated moving bed systems   总被引:2,自引:0,他引:2  
Simulated moving bed (SMB) systems are of rising interest in the purification of pharmaceuticals or specialty chemicals (racemic mixtures, proteins, organic acids, etc.). This is particularly due to their advantage in solvent reduction, obtained productivity and purities as well as investment costs in comparison to eluent chromatography. This paper evolved from the need for a readily available algorithm in order to find optimal operating conditions for SMB chromatography systems with nonlinear or coupled adsorption isotherms. The herein developed algorithm is based on a semi-deterministic two-step approach. First, optimal operating conditions with regard to an objective function are found by knowing adsorption measurements only. In a second step actual SMB results are used to adapt the initial isotherm measurements and match the simulation with the experiment. The algorithm is verified on a bench-scale SMB unit applied for the separation of a racemic epoxide with Chiralcel-OD as stationary phase. The developed algorithm improved the productivity of the investigated experimental design by 24%.  相似文献   

11.
The various forms of chromatography are primarily determined by differences in the physical state of the mobile phases. The main chromatographic categories include gas chromatography (GC), liquid chromatography, and supercritical fluid chromatography. Adjusting a temperature and pressure will change the mobile phase from liquid to supercritical fluid to gas, with concomitant changes in their physical properties. In this paper, the technique transition-phase chromatography (TPC) is described. In TPC, different mobile phase conditions exist inside the column. This phase transformation within the column results in huge differences in density, solvating power, viscosity, diffusivity, and, as a consequence, in the chromatographic properties of the mobile phase. TPC experiments using capillary columns packed in our laboratory have shown that when the mobile phase is transformed from supercritical fluid to gas, high column efficiencies can be achieved. The transition from supercritical fluid to gas (also called solvating GC), a particular case of the TPC, is evaluated for the separation of complex real samples (environmental, food, and fuels).  相似文献   

12.
A new device to accurately deliver a small amount of methanol into supercritical carbon dioxide fluid is described. Carbon dioxide, the most widely used mobile phase in supercritical fluid chromatography, is a relatively non-polar fluid, and hence the addition of a small amount of methanol could change the solvent strength of the mobile phase. In this work, supercritical CO2 and methanol are delivered from the pump to a 100-μl mixing chamber in which a small magnetic bar is rotating. After passing through the mixing chamber, supercritical CO2 is changed to a new mobile phase with different polarity. The modified mobile phase was successfully used for the separations of polar compounds and polyaromatic hydrocarbons (PAHs).  相似文献   

13.
The use of a porous glassy carbon (PGC) material as a packed-column SFC stationary phase has been previously demonstrated [1]. The material is further characterized in terms of its retention characteristics. The effects of variations in mobile phase composition, pressure, and temperature conditions are evaluated. Variation of temperature and pressure yielded expected results, specifically, decreased solute capacity factors with increased mobile phase density. The choice of supercritical fluid mobile phase allows the most notable control of solute retention; this was evaluated by adding low percentages of organic modifiers of varying molecular weights to the supercritical carbon dioxide mobile phase. PGC-SFC provides reversed phase characteristics similar to those found for PGC-HPLC. Porous glassy carbon has selectivity characteristics previously unavailable in supercritical fluid chromatography. Use of porous glassy carbon in supercritical fluid chromatography may provide distinct advantages in difficult analytical separations, allowing separations of molecules with only slight structural differences.  相似文献   

14.
Kim K  Kim JI  Park H  Koo YM  Lee KS 《Journal of chromatography. A》2011,1218(38):6843-6847
A bi-level optimizing control scheme originally proposed for a simulated moving bed (SMB) with linear isotherms has been extended to an SMB with nonlinear isotherms. Cyclic steady state optimization is performed in the upper level to determine the optimum switching period and time-varying feed/desorbent flow rates, and repetitive model predictive control is run in the lower level for purity regulation, taking the decision variables from the upper level as feed-forward information. Experimental as well as numerical study for an SMB process separating a high-concentration mixture of aqueous L-ribose and L-arabinose solutions showed that the proposed scheme performs satisfactorily against various disturbances. In contrast, an alternative scheme based on an SMB model with linear isotherms showed a limitation in the control performance; this scheme was apt to fail in purity regulation.  相似文献   

15.
The possibilities, advantages, shortcomings, and prospects of using supercritical fluids for separating and extracting metal complexes with organic reagents are considered. The theoretical bases of supercritical fluid chromatography and factors influencing the separation of metal complexes (nature of the organic reagent, solubility of reagents and complexes in a supercritical fluid, type of column, motionless phase, addition of a modifier into the mobile phase, and the test solvent) are discussed. The processes occurring in complexes during chromatography are discussed. The bases of supercritical fluid extraction and factors influencing extraction of metals (nature and solubility in a supercritical fluid of an organic reagent and complexes; concentration and ways of introducing the reagent into the system; addition of the modifier, water, and surfactants; the collector; and the matrix) are considered. The possibilities of methods for determining metals in various objects are shown.  相似文献   

16.
The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns.  相似文献   

17.
《Analytical letters》2012,45(9):2009-2024
Abstract

Adding additional components to supercritical carbon dioxide in supercritical fluid chromatography can extend or significantly alter the fluid solvating properties. Polar samples which are difficult to be analyzed with pure supercritical CO2 because of their high polarity can be separated by adding polar modifiers to supercritical CO2. In this paper, a new mixing device using a teflon high capacity filter for adding polar modifiers to carbon dioxide mobile phase is introduced. This new mixing device could keep the amount of modifier in the mobile phase constant for a much longer time than a saturator column. The amount of water or methanol dissolved in supercritical CO2 was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI).  相似文献   

18.
This work analyzes the performance of the SMB and the column chromatography processes for two different case studies: the first stage of the plasmid DNA (pDNA) polishing, and the Tr?ger's base enantiomer separation, in which the adsorption isotherms are linear and non-linear, respectively. Simulation tools are used together with an optimization routine (Non-Sorting Genetic Algorithm (NSGA)) in order to find the optimum operating conditions leading to maximum productivity and minimum solvent consumption; the optimum solution for each of the processes is a curve on the productivity-solvent consumption plane, the so-called Pareto set. The comparison between the column and the SMB processes is based on the relative position of the two Pareto sets calculated at equal conditions and for the same final purity and recovery of the target species. The results show that SMB is superior to column chromatography in the two case studies investigated, i.e. in the case of the linear isotherm (pDNA), the productivity gain is up to a factor two for a given value of the solvent consumption. Furthermore, the flexibility of the SMB operation is larger, since the Pareto sets are flatter and they prolong into regions of the productivity-solvent consumption plane that are not accessible with the column chromatography process.  相似文献   

19.
Chromatography with a supercritical fluid as the mobile phase was suggested more than four decades ago (Klesper, E., Corwin, A. H., Turner, D. A., J. Org. Chem. 1962, 27, 700-701). Supercritical fluid chromatography (SFC) is basically a hybrid of GC and LC that eases the resolution of a mixture of compounds not conveniently resolved by either GC or LC. The mobile phases for SFC have low viscosities and high diffusion coefficients compared to those for HPLC and allow for high efficiency separations. SFC uses supercritical fluid as the mobile phase, polar organic solvents as the modifiers in conjunction with acidic/basic compounds as additives to run the chromatographic process like in HPLC. In many applications, SFC-based methods are advantageous over HPLC-based methods as a separation tool in terms of efficiency and economical impact perspectives. Today, the availability of commercial hardware and API interfaces with a mass spectrometer makes SFC even more widely applicable for chemical analysis in many research fields. This review summarizes a variety of novel SFC-MS methods for chemical analysis that have been reported in the peer-reviewed publications.  相似文献   

20.
Bari VR  Dhorda UJ  Sundaresan M 《Talanta》1997,45(2):297-302
A reproducible and efficient method for the separation and estimation of ibuprofen, chlorzoxazone and acetaminophen has been developed using packed column supercritical fluid chromatography (SFC). The separations were performed on an ODS-RP JASCO column employing methanol modified supercritical fluid CO(2) as the mobile phase. The densities and polarities of the mobile phase were optimised from the effects of pressure, temperature and modifier concentration on retention times. In addition a flow programming of the mobile phase helped to obtain better resolution and a faster elution for acetaminophen. The analytes were detected using a uv detector at 254 nm. The study includes a successful attempt at quantitation of the 3 drugs. Chromatographic figures of merit, linear dynamic range, limit of quantitation (LOQ), precision and accuracy etc. were determined to assess the viability of the method. The method has been extended to commercial dosage forms containing all 3 drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号