首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A magnetic oil in water (o/w) emulsion was cationized by adsorption of poly(ethyleneimine) (PEI). In a subsequent step, the cationic particles were derivatized with partially hydrolyzed poly(maleic anhydride-alt-methyl vinyl ether) copolymer (PMAMVE) to lead negatively charged colloids. The experimental conditions for the covalent grafting of the PMAMVE were selected on the basis of colloidal stability, charge inversion and absence of inhibition of the enzymatic DNA/RNA amplification reactions. Once the experimental conditions were selected, oligonucleotides (ODN) bearing particles were obtained according to the sequential process: (i) grafting of single stranded ODNs onto PMAMVE; (ii) grafting of the PMAMVE-ODN conjugates onto the cationic particles according to the conditions defined above. In this strategy, both steps could be independently controlled. The ODN-PMAMVE-particles conjugates were very stable with time, did not inhibit RT-PCR and were capable of hybridizing specifically with the complementary target.  相似文献   

2.
The polyelectrolyte complex (PEC) membrane formed by cellulose sulfate and poly(dimethyldiallylammonium chloride) was used to encapsulate lactate dehydrogenase. The exclusion limit of the membrane was found to be low enough to secure irreversible entrapping of the enzyme. The obtained capsules were checked for their functionality in a stirred-batch reactor by following the kinetics of NADH oxidation. The data were fitted with an isotropic kinetic model including competitive product-inhibition phenomenon. The results of mathematical modeling demonstrated that the anisotropic system, like PEC capsules, could be satisfactorily described by the isotropic model.  相似文献   

3.
Mechanical properties of model and natural gels have recently been demonstrated to play an important role in various cellular processes such as adhesion, proliferation, and differentiation, besides events triggered by chemical ligands. Understanding the biomaterial/cell interface is particularly important in many tissue engineering applications and in implant surgery. One of the final goals would be to control cellular processes precisely at the biomaterial surface and to guide tissue regeneration. In this work, we investigate the substrate mechanical effect on cell adhesion for thin polyelectrolyte multilayer (PEM) films, which can be easily deposited on any type of material. The films were cross linked by means of a water-soluble carbodiimide (EDC), and the film elastic modulus was determined using the AFM nanoindentation technique with a colloidal probe. The Young's modulus could be varied over 2 orders of magnitude (from 3 to 400 kPa) for wet poly(L-lysine)/hyaluronan (PLL/HA) films by changing the EDC concentration. The chemical changes upon cross linking were characterized by means of Fourier transform infrared spectroscopy (FTIR). We demonstrated that the adhesion and spreading of human chondrosarcoma cells directly depend on the Young's modulus. These data indicate that, besides the chemical properties of the polyelectrolytes, the substrate mechanics of PEM films is an important parameter influencing cell adhesion and that PEM offer a new way to prepare thin films of tunable mechanical properties with large potential biomedical applications including drug release.  相似文献   

4.
A series of temperature‐sensitive poly(CSA‐co‐NIPAAm) membranes that were suitable for cell culture and confluent cell sheets detachment were prepared. The membranes with thermo‐responsive surface properties were synthesized by the copolymerization of acrylic acid‐derivatized chitosan (CSA) and N‐isopropylacrylamide (NIPAAm) in aqueous solution. Characterization of the membranes were carried out by means of the Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and water contact‐angle (WCA) measurements. The adhesion and detachment of mouse fibroblast (L929) cells on these membranes have been investigated. The study showed that poly(CSA‐co‐NIPAAm) membranes could not only enhance fibroblasts attachment but also harvest confluent cell sheets by simply lowering the temperature. Furthermore, the detached cells retained high viability and could proliferate again after transferred to a new culture surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The characterization of a polyelectrolyte complex material comprised of two biopolymers, a chitosan upper layer and a gellan gum under layer, is reported. It is shown that the upper layer of chitosan with incorporated levofloxacin displays an antibacterial activity, while the under layer of a gellan gum/TiO(2) composite supports the growth of fibroblastic cells.  相似文献   

7.
Three types of multilayer films made from poly(L-lysine)/hyaluronan, chitosan/hyaluronan, and poly(allylamine hydrochloride)/poly(L-glutamic acid), were used to investigate the interplay between film mechano-chemical properties and cell adhesion. We showed that C2C12 myoblast adhesion and proliferation depended on the extent of film cross-linking for all films whatever their internal chemistry. Cell spreading areas were found to correlate with the film's stiffness and to be distributed over a unique curve. Immuno-staining of the cytoskeletal components revealed the formation of F-actin stress fibers and vinculin plaques only on stiff films. Finally, we compared our results with previous studies performed on polyacrylamide and PDMS gels, two recognized materials for mechano-sensitivity studies. We found that the effect of substrate stiffness on cell spreading is material-dependent.  相似文献   

8.
The influence of the linear charge density (LCD) of a polyelectrolyte on its adsorption on an oppositely charged colloidal particle is investigated by Monte Carlo simulations. Adsorption characteristics are studied at different linear charge densities and ionic concentrations and for a given polyelectrolyte/particle size ratio so that particle curvature has full effect. The isolated polyelectrolyte goes through a smooth transition from a collapsed structure to an extended rod-like conformation with increasing the linear charge density in the low ionic concentration regime. In the high ionic concentration regime, the polyelectrolyte is less sensitive to the increase in the linear charge density and adopts a coil conformation. We found that complex formation is promoted by decreasing the ionic concentration and increasing the linear charge density and that large changes in the polymer dimensions are observed at the adsorption-desorption limit. By adjusting the linear charge density and ionic strength, we demonstrate that the adsorption-desorption limit corresponds to a sharp transition from non-adsorbed to adsorbed conformations and that the mean adsorption energy per monomer has to be less than -0.4 kT to achieve adsorption. We calculated that the linear charge density at the adsorption-desorption limit is related to the Debye-Hückel length according to LCDcrit ~32. At small values of the linear charge density and low ionic strength (no adsorption is observed at high ionic strength), a large amount of monomers are present in loops and tails. By increasing LCD, the amount of monomers in trains reaches a maximum value and the polyelectrolyte adopt flat conformation at the surface of the particle.  相似文献   

9.
SK Kim  WK Moon  JY Park  H Jung 《The Analyst》2012,137(17):4062-4068
Leukocyte adhesion to adhesion molecules on endothelial cells is important in immune function, cancer metastasis and inflammation. This cell-cell binding is mediated via cell adhesion molecules such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) found on endothelial cells. Because these adhesion molecules on endothelial cells vary significantly across several disease conditions such as autoimmune diseases, inflammation or cancer metastasis, investigations of therapeutic agents that down-regulate leukocyte-endothelial interactions have been based on in vitro models using endothelial cell lines. Here we report a new model, an inflammatory mimetic microfluidic chip, which emulates leukocyte binding to cell adhesion molecules (CAM) by controlling the types and ratio of adhesion molecules. In our model, E-selectin was essential for the synergic binding of Jurkat T cells. Immunosuppressive drugs, such as tacrolimus (FK506) and cyclosporine A (CsA), were used to inhibit T cell interactions under the physiologic model of T cell migration at a ratio of 5?:?4.3?:?3.9 (E-selectin?:?ICAM-1?:?VCAM-1). Our results support the potential usefulness of the inflammatory mimetic microfluidic chip as a T cell adhesion assay tool with modified adhesion molecules for applications such as immunosuppressive drug screening. The inflammatory mimetic microfluidic chip can also be used as a biosensor in clinical diagnostics, drug efficacy tests and high throughput drug screening due to the dynamic monitoring capability of the microfluidic chip.  相似文献   

10.
聚电解质渗透汽化膜   总被引:5,自引:0,他引:5  
介绍了聚电解质渗透汽化膜的研究进展,包括聚电解质以及聚电解质复合物的定义、特点、制备、着重介绍了近年来开发的一些重要的聚电解质渗透汽化膜的制备方法及其分离性能。  相似文献   

11.
Semi-crystalline polyethylene (PE), rubbery silicone rubber (SR) and glassy poly[(l-trimethylsilyl)-l-propyne] (PTMSP) were modified for olefin/paraffin separation. The polymers were first grafted with the acrylic acid (AA) and then incorporated with silver ions for forming the complex membranes such as PE-g-AA-Ag+, SR-g-AA-Ag+ and PTMSP-g-AA-Ag+ The complex membranes were activated by glycerol solvation and subsequently showed high selectivity in olefin/paraffin separation. The silver ion distribution, the kinetics of olefin binding to PE-g-AA-Ag+, the gas permeation properties and the sorption behaviors were studied. A novel dry complex membrane for olefin/paraffin separation based on AgClO4 complexing with PTMSP main-chain was also studied.  相似文献   

12.
The complex spatiotemporal organization of cellular and molecular interactions dictates the physiological function of cells. These behaviors are indications of an integrated response to a three-dimensional cellular environment and anchored in cell adhesion on scaffolds. Here, we are able to control interconnected structural, mechanical, and chemical stimuli by dictating the cellular environment through chemical surface modifications, soft lithography, and mechanical deformation. Control of these variables is obtained through the use of an elastomeric membrane chemically modified for cell adhesion with a pressure-driven cell-stretching device which creates a pattern of forces similar to those encountered in physiological environments. Further, the integration of lithographic methods and chemical patterning allows the introduction of space- and time-dependent parameters by combining mechanical stimulation, biochemical regulation, and scaffolding design. The method is applied to stimulate single cells and cell populations to examine cellular response with spatiotemporal control. This research provides the capacity to probe biological patterns and tissue formation under the influence of mechanical stress.  相似文献   

13.
In-situ attenuated total reflection (ATR)-FTIR spectroscopy enabled studies on the interaction between the differently charged model proteins human serum albumin, lysozyme, immunoglobulin G and multilayer assemblies, which were deposited by alternating adsorption of poly(ethyleneimine) and poly(acrylic acid) onto Si crystals. Low adsorbed protein amounts were observed if the top polyelectrolyte layer and the protein were equally charged, whereas enhanced protein adsorption occurred for electrostatic attraction between protein and top polyelectrolyte layer.  相似文献   

14.
The adhesion of cells is mediated by the binding of several cell-surface receptors to ligands found in the extracellular matrix. These receptors often have overlapping specificities for the peptide ligands, making it difficult to understand the roles for discrete receptors in cell adhesion, migration, and differentiation as well as to direct the selective adhesion of cell types in tissue-engineering applications. To overcome these limitations, we developed a strategy to rewire the receptor-ligand interactions between a cell and substrate to ensure that adhesion is mediated by a single receptor with unique specificity. The strategy combines a genetic approach to engineer the cell surface with a chimeric integrin receptor having a unique ligand binding domain with a surface chemistry approach to prepare substrates that present ligands that are bound by the new binding domain. We show that Chinese hamster ovary cells that are engineered with a chimeric beta1 integrin adhere, signal, and even migrate on a synthetic matrix.  相似文献   

15.
A cell-patterned substrate with aptamer functionalization was prepared, which holds promise in selective cell isolation fields such as the isolation of the circulating tumor cells.  相似文献   

16.
A method for the synthesis of new anion exchangers for ion chromatography has been proposed. The method is based on the fact that interaction of water-soluble anionic polymers with materials containing negatively charged sulfo groups on the surface gives rise to polyelectrolyte complexes. It is demonstrated that replacement of functional groups in molecules of the polymer affects the selectivity of the ion-chromatographic determination of ions. Recommendations are given for selecting a polymer for the determination of mixtures of inorganic anions and anionic complexes of transition metals in ethylenediaminetetraacetic acid.  相似文献   

17.
Polyelectrolyte complexes (PEC) are ionically bonded hydrogels. The resin is synthesized by coreacting linear, water-soluble ionic polymers of opposite electrical charge under carefully controlled conditions. The resulting material is insoluble in water, electrolytes, organic, or common solvents, but soluble in special ternary solvents. Optically clear membranes or shaped articles can be prepared by employing simple solvent casting and drying techniques upon resin dissolution. The equilibrium gel water content of typical, homogeneous complexes can be made to range from 30 to 90% by weight by changing the initial polyanion to polycation ratio. For almost any given charge ratio the water content can be varied from 30 to 90% by initial adjustment of the solvent composition. As the gel water content of a membrane is raised the dialytic, oxygen, and water transport increase. High water content membranes with and without glass reinforcement were shown to be extremely permeable materials. Because these hydrated complexes appeared to be chemically inert and could be tailored to be rich in either polyanion or polycation charged groups, their biocompatability was studied. Extraction, toxicity, tissue compatability, carcinogenicity, and blood contact studies on various polyelectrolyte complexes were carried out.  相似文献   

18.
Swollen complex membrane of linear low density polyethylene-graft-poly(acrylic acid)-Ag+ (LLDPE-g-AA-Ag+) were studied and compared with the corresponding membranes based on silicone rubber (SR) and poly[1-(trimethylsilyl)-1-propyne] (PTMSP), such as SR-g-AA-Ag+ and PTMSP-g-AA-Ag+. The polymeric matrix was first grafted with acrylic acid (AA) and then incorporated with silver ions (Ag+) in glycerol solution for forming the swollen complex membrane. Various metal ions and swollen agents in membranes for isobutene/isobutane separation were presented. The swelling of the complex membrane containing Ag+ with glycerol shows a higher olefin/paraffin selectivity than those membranes containing Cu+ or Cu2+ ions and/or other swelling agents. The gas permeability coefficients and the isobutene/isobutane selectivity of LLDPE-g-AA-Ag+ membrane were compared with those of SR-g-AA-Ag+ and PTMSP-g-AA-Ag+ membranes. The PTMSP-g-AA-Ag+ complex membrane was found to reach high gas permeability and high olefin/paraffin selectivity. The effects of solubility and diffusivity in membranes are compared with the corresponding non-Ag membranes. The sorption properties in these complex membranes were also included.  相似文献   

19.
An electric field enhanced method is developed for fabricating layer-by-layer (LbL) self-assembly polyelectrolyte multilayer membranes. Three kinds of electric field enhanced polyelectrolyte multilayer membranes (EPEMs), poly(diallyl dimethylammonium chloride)/poly(styrenesulfonate sodium salt) (PDDA/PSS), poly(diallyldimethylammonium chloride)/poly(acrylic acid sodium salt) (PDDA/PAA) and polyethylenimine/poly(acrylic acid sodium salt) (PEI/PAA), were self-assembled on a reverse osmosis membrane (ROM). The pervaporation performances of EPEMs for separating isopropanol–water mixtures (90/10, w/w) are all superior to those of corresponding normal self-assembled polyelectrolytes membranes (PEMs), and the selectivity increases with PDDA/PSS, PDDA/PAA and PEI/PAA in order. For (PEI/PAA)4PEI EPEM, the separation factor is 1075 and permeation flux is 4.05 kg m−2 h−1 at 70 °C. This novel method speeds up the LbL process, which makes it promising for the practical application of the LbL multilayer membrane.  相似文献   

20.
Tissue adhesions cause severe and life-threatening conditions, including pain, infertility, and heart defects. The purpose of this study is to develop an anti-adhesion membrane that sticks onto the injured tissues or organs in order to avoid the suturing of the membrane which may lead to the unnecessary tissue adhesion. We previously developed poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) multiblock copolymers as soft, water absorbable, and quickly degradable biomaterials. The copolymer with the highest PEG content adsorbs body fluid in vivo and sticks to the tissues. In the present study thin film and nanofiber mat were prepared from the copolymer and evaluated in vitro and in vivo. The hydrophilicity and the degradation rate increased with the increased PEG content of the multiblock copolymers. The copolymer with PEG content of 88% (LE(m)-88) was quickly swollen, become viscous, and rapidly collapsed in PBS, which was suitable feature for adhesion prevention material without suturing. Various double layered membranes with different characteristics were evaluated in vivo by applying onto the cecum scrubbed with abrasive paper, and onto the heart surface after pericardium removal. LE(m)-88 was swollen with tissue fluid and had a hydrogel-like nature. LE(m)-88 film/LE(m)-32 film double layered membrane was found to be the most effective in preventing tissue adhesion in cecum model. This excellent performance was confirmed in the rat heart adhesion model. In both models, the LE(m)-32 support film was detached from the site of application, which leads to the healing without adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号