首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
We report experimental results which show that the interfacial deformation around glass particles (radius, 200-300 microm) at an oil-water (or air-water) interface is dominated by an electric force, rather than by gravity. It turns out that this force, called for brevity "electrodipping," is independent of the electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces. Under our experimental conditions, it is due to charges at the particle-oil (instead of particle-water) boundary. The derived theoretical expressions, and the experiment, indicate that this electric force pushes the particles into water. To compute exactly the electric stresses, we solved numerically the electrostatic boundary problem, which reduces to a set of differential equations. Convenient analytical expressions are also derived. Both the experimental and the calculated meniscus profile, which are in excellent agreement, exhibit a logarithmic dependence at long distances. This gives rise to a long-range electric-field-induced capillary attraction between the particles, detected by other authors. Deviation from the logarithmic dependence is observed at short distances from the particle surface due to the electric pressure difference across the meniscus. The latter effect gives rise to an additional short-range contribution to the capillary interaction between two floating particles. The above conclusions are valid for either planar or spherical fluid interfaces, including emulsion drops. The electrodipping force, and the related long-range capillary attraction, can engender two-dimensional aggregation and self-assembly of colloidal particles. These effects could have implications for colloid science and the development of new materials.  相似文献   

2.
The equilibrium position of a spherical or prolate spheroidal particle resembling a needle floating at the interface between two immiscible fluids is discussed. A three-dimensional meniscus attached to an a priori unknown contact line at a specified contact angle is established around the particle, imparting to the particle a capillary force due to surface tension that is balanced by the buoyancy force and the particle weight. An accurate numerical solution for a floating sphere is obtained by solving a boundary-value problem, and the results are compared favorably with an approximate solution where the effect of the particle surface curvature is ignored and the elevation of the contact line is computed using an analytical solution for the meniscus attached to an inclined flat plate. The approximate formulation is applied locally around the nearly planar elliptical contact line of a prolate spheroid to derive a nonlinear algebraic equation governing the position of the particle center and the mean elevation of the contact line. The effect of the fluid and particle densities, contact angle, and capillary length is discussed, and the shape of the contact line is reconstructed and displayed from the local solution.  相似文献   

3.
4.
We study the alignment of micron-scale particles at air-water interfaces with unequal principle radii of curvature by optical microscopy. The fluid interface bends to satisfy the wetting conditions at the three phase contact line where the interface intersects the particle, creating deflections that increase the area of the interface. These deflections decay far from the particle. The far field interface shape has differing principle radii of curvature over length scales large compared to the particle. The deflections create excess area which depends on the angle of the particle with respect to the principle axes of the interface. We show that when particles create surface deflections with quadrupolar modes, the particles rotate to preferred orientations to minimize the free energy. In experiment, we focus on uniform surface energy particles, for which quadrupolar modes are forced by the particle shape. Analytical expressions for the torque and stable states are derived in agreement with experiment and confirmed computationally.  相似文献   

5.
We study shape and buckling transitions of particle-laden sessile and pendant droplets that are forced to shrink in size. Monodisperse polystyrene particles were placed at the interface between water and decane at conditions that are known to produce hexagonal, crystalline arrangements on flat interfaces. As the volumes of the drops are reduced, the surface areas are likewise diminished. This effectively compresses the particle monolayer coating and induces a transition from a fluid film to a solid film. Since the particles are firmly attached to the interface by capillary forces, the shape transitions are reversible and shape/volume curves are the same for drainage and inflation. Measurements of the internal pressure of the drops reveal a strong transition in this variable as the buckling transition is approached.  相似文献   

6.
This paper introduces a simple method for modelling non-spherical particles with a fixed contact angle at an interface whilst also providing a method to fix the particles orientation. It is shown how a wide variety of particle shapes (spherical, ellipsoidal, disc) can be created from a simple initial geometry containing only six vertices. The shapes are made from one continuous surface with edges and corners treated as smooth curves not discontinuities. As such, particles approaching cylindrical and orthorhombic shapes can be simulated but the contact angle crossing the edges will be fixed. Non-spherical particles, when attached to an interface can cause large distortions in the surface which affect the forces acting on the particle. The model presented is capable of resolving this distortion of the surface around the particle at the interface as well as allowing for the particle's orientation to be controlled. It is shown that, when considering orthorhombic particles with rounded edges, the flatter the particle the more energetically stable it is to sit flat at the interface. However, as the particle becomes more cube like, the effects of contact angle have a greater effect on the energetically stable orientations. Results for cylindrical particles with rounded edges are also discussed. The model presented allows the user to define the shape, dimensions, contact angle and orientation of the particle at the interface allowing more in-depth investigation of the complex phenomenon of 3D film distortion around an attached particle and the forces that arise due to it.  相似文献   

7.
Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters   总被引:1,自引:0,他引:1  
In this paper we examine the electrodynamics of silver nanoparticles and of clusters of nanoparticles, with an emphasis on extinction spectra and of electric fields near the particle surfaces that are important in determining surface-enhanced Raman (SER) intensities. The particles and clusters are chosen to be representative of what has been studied in recent work on colloids and with lithographically prepared particles. These include spheres, spheroids, truncated tetrahedrons, and clusters of two or three of these particles, with sizes that are too large to be described with simple electrostatic approximations but small compared to the wavelength of light. The electrodynamics calculations are mostly based on the discrete dipole approximation (DDA), which is a coupled-finite element approach which produces exact or nearly exact results for particles of arbitrary size and shape if fully converged. Mie theory results are used to study the validity of the DDA for spherical particles, and we also study the validity of the modified long wavelength approximation (MLWA), which is based on perturbative corrections to the electrostatic limit, and of the single dipole per particle approximation (SDA). The results show how the dipole plasmon resonance properties and the electric field contours around the particle vary with particle shape and size for isolated particles. For clusters of particles, we study the effect of interparticle spacing on plasmon resonance characteristics. We also show that the quadrupole resonance is much less sensitive to particle shape and interparticle interactions than the dipole plasmon resonance. These results provide benchmarks that will be used in future comparisons with experiment.  相似文献   

8.
The influence of the effects associated with the inertia of particles and the surrounding fluid on the electrophoresis in an alternating electric field has been theoretically investigated. From solving the hydrodynamic equations the electrophoretic velocity of a spherical particle was found to depend on the frequency of the external electric field and on the particle-to-fluid-density ratio. It is shown that, due to inertial effects, the liquid flow around particles with a thin electrical double layer (EDL) is no longer potential. A mechanism of the formation of steady-state flow in the vicinity of oscillating particles with a thin EDL is proposed. Using numerical methods, a picture of the fluid streamlines in such a flow is obtained. The spatial distribution of the fluid velocity in the vicinity of a particle is also found. It was established that with an increasing frequency of the electric field the steady-state flow velocity passes through a maximum. The flow direction depends on the ratio between the densities of a particle and the surrounding fluid. The reversal of direction takes place when this ratio is about 0.7. The case of a thick EDL has also been considered, and a comparative analysis of the flow distributions around the particles with a thin and those with a thick EDL has been carried out.  相似文献   

9.
This paper reviews both theory and experimental observation of the AC electrokinetic properties of conducting microparticles suspended in an aqueous electrolyte. Applied AC electric fields interact with the induced charge in the electrical double layer at the metal particle–electrolyte interface. In general, particle motion is governed by both the electric field interacting with the induced dipole on the particle and also the induced-charge electro-osmotic (ICEO) flow around the particle. The importance of the RC time for charging the double layer is highlighted. Experimental measurements of the AC electrokinetic behaviour of conducting particles (dielectrophoresis, electro-rotation and electro-orientation) are compared with theory, providing a comprehensive review of the relative importance of particle motion due to forces on the induced dipole compared with motion arising from induced-charge electro-osmotic flow. In addition, the electric-field driven assembly of conducting particles is reviewed in relation to their AC electrokinetic properties and behaviour.  相似文献   

10.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2021,42(21-22):2134-2142
The electrophoresis and electric conduction of a suspension of charged spherical particles in a salt-free solution are analyzed by using a unit cell model. The linearized Poisson-Boltzmann equation (valid for the cases of relatively low surface charge density or high volume fraction of the particles) and Laplace equation are solved for the equilibrium electric potential profile and its perturbation caused by the imposed electric field, respectively, in the fluid containing the counterions only around the particle, and the ionic continuity equation and modified Stokes equations are solved for the electrochemical potential energy and fluid flow fields, respectively. Explicit analytical formulas for the electrophoretic mobility of the particles and effective electric conductivity of the suspension are obtained, and the particle interaction effects on these transport properties are significant and interesting. The scaled zeta potential, electrophoretic mobility, and effective electric conductivity increase monotonically with an increase in the scaled surface charge density of the particles and in general decrease with an increase in the particle volume fraction, keeping each other parameter unchanged. Under the Debye-Hückel approximation, the dependence of the electrophoretic mobility normalized with the surface charge density on the ratio of the particle radius to the Debye screening length and particle volume fraction in a salt-free suspension is same as that in a salt-containing suspension, but the variation of the effective electric conductivity with the particle volume fraction in a salt-free suspension is found to be quite different from that in a suspension containing added electrolyte.  相似文献   

11.
Colloidal particles are continuously assembled into crystalline particle coatings using convective fluid flows. Assembly takes place inside a meniscus on a wetting reservoir. The shape of the meniscus defines the profile of the convective flow and the motion of the particles. We use optical interference microscopy, particle image velocimetry, and particle tracking to analyze the particles' trajectory from the liquid reservoir to the film growth front and inside the deposited film as a function of temperature. Our results indicate a transition from assembly at a static film growth front at high deposition temperatures to assembly in a precursor film with high particle mobility at low deposition temperatures. A simple model that compares the convective drag on the particles to the thermal agitation explains this behavior. Convective assembly mechanisms exhibit a pronounced temperature dependency and require a temperature that provides sufficient evaporation. Capillary mechanisms are nearly temperature independent and govern assembly at lower temperatures. The model fits the experimental data with temperature and particle size as variable parameters and allows prediction of the transition temperatures. While the two mechanisms are markedly different, dried particle films from both assembly regimes exhibit hexagonal particle packings. We show that films assembled by convective mechanisms exhibit greater regularity than those assembled by capillary mechanisms.  相似文献   

12.
Particle bridging between a water drop and a flat oil-water interface has been observed when the drop is brought into contact with the interface, leading to the formation of a dense particle monolayer of disc shape (namely, particle disc) that prevents the drop from coalescing into the bulk water phase. Unlike previous observations where particles from opposite interfaces appear to register with each other before bridging, the present experiment demonstrates that the particle registry is not a necessity for bridging. In many cases, the particles from one of the interfaces were repelled away from the contact region, leaving behind the particles from the other interface to bridge the two interfaces. This is confirmed by particle bridging experiments between two interfaces covered with different sized particles, and between a particle-covered interface and a clean interface. The dynamics associated with the growth of the particle disc due to particle bridging follows a power law relationship between the radius of the disc and time: r proportional, variant t0.32+/-0.03. A scaling analysis assuming capillary attraction as the driving force and a hydrodynamic resistance leads to the power law r proportional, variant t1/3, in good agreement with the experiment. In addition, we found that binary mixtures of two different sized particles can undergo phase segregation driven by the particle bridging process.  相似文献   

13.
The features of concentration polarization caused by electric current through a unipolar conductive particle are considered. The peculiarities of the formation of an induced space charge near a particle with electron-type conductivity are analysed. It has been shown that the theoretical values of electrophoretic velocity for these particles are essentially smaller than those calculated for particles with ion-type conductivity.A new method to observe the superfast electrophoresis is developed. The electrophoretic velocity of graphite and activated carbon particles of different size (diameter, 200–500 μm) displaced in distilled water and electrolyte solutions in strong electric fields (100–500 V cm−1) was measured. It is shown that, in contrast to classical electrophoresis, the electrophoretic mobility of such particles increases with the particle size and the external field strength. The experimental and theoretical results are compared. The discrepancy between theory and experiment is analysed.  相似文献   

14.
We have tackled in situ electric conductance measurements under microscopic observations for alignments of silica particles that are induced by ionic polarization of the electrical double layer (EDL) around the particles. Using the in situ conductance measurements, we have presented evidence that electro-osmotic flow at a vessel bottom/water interface would be coupled with the ionic polarization in the EDL of spherical silica particles settling at the bottom (Langmuir 2007, 23, 8797). In this study, we followed this phenomenon further. We altered the zeta potential of a platform of a glass plate on which a pearl chain of silica particles was formed under an ac electric field to control the mobility of electro-osmotic flow at the macroscopic interface of the platform/water. As the magnitude of the zeta potential of the platform increased, the surface distance between neighboring particles in the pearl chains decreased and the in situ conductance totally increased due to the enhancement of the dipole moments induced by the ionic polarizations of the particles. These results could be explained by considering that the electro-osmotic contribution to the surface conduction around the particles would be coupled with that occurring at the platform/water interface.  相似文献   

15.
The plot of viscosity versus particle volume fraction for the water carrier of self-formed CoFe2O4 magnetic fluid is abnormal in zero magnetic field. However,the viscosity theory of the suspension with the global rigid particle filling cannot explain the experiment well. That is because the nanoparticles have aggregated before preparation of magnetic fluid. The fact is found that the sedimentation without magnetic field and the becoming chains in magnetic field of this type of magnetic fluid need the big particles which core are pre-aggregates by researching the interaction of particles of magnetic fluid. Around the big particles,nanoparticles are absorbed with the type of dynamic state. It is on that idea that the model of fluctuant aggregation is made. So,the average diameter,Einstein ratio and particles size distributive deviation of free suspended bodies in zero magnetic fluid are the functions of the particles volume fraction. And then,Popplewell’s formula of the viscosity is modified with this model. As a result,a well-fitted curve is obtained.  相似文献   

16.
When a particle is placed in a thin liquid film on a planar substrate, the liquid either climbs or descends the particle surface to satisfy its wetting boundary condition. Analytical solutions for the film shape, the degree of particle immersion, and the downward force exerted by the wetting meniscus on the particle are presented in the limit of small Bond number. When line tension is significant, multiple solutions for the equilibrium meniscus position emerge. When the substrate is unyielding, a dewetting transition is predicted; that is, it is energetically favorable for the particle to rest on top of the film rather than remain immersed in it. If the substrate can bend, the energy to drive this bending is found in the limits of slow or rapid solid deflection. These results are significant in a wide array of disciplines, including controlled delivery of drugs to pulmonary airways, the probing of liquid film/particle interface properties using particles affixed to AFM tips and the positioning of small particles in thin films to create patterned media.  相似文献   

17.
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles.  相似文献   

18.
‘Capillary forces’ are interactions between particles mediated by fluid interfaces. Recent advances in this field have been achieved by experiments and theory on lateral capillary forces, which are due to the overlap of menisci formed around separate particles attached to an interface. In particular, we should mention the cases of ‘finite menisci’ and ‘capillary multipoles’. The capillary-bridge forces were investigated in relation to capillary condensation and cavitation, surface-force measurements and antifoaming by oily drops. The studies on colloidal self-assembly mediated by capillary forces developed in several promising directions. The obtained structures of particles have found numerous applications.  相似文献   

19.
We derive the radial distribution function and the static structure factor for the particles in model nanoparticle-organic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R(g) is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood.  相似文献   

20.
The use of spatially nonuniform electric fields for the contact-free colloidal particle assembly into ordered structures of various length scales is a research area of great interest. In the present work, numerical simulations are undertaken in order to advance our understanding of the physical mechanisms that govern this colloidal assembly process and their relation to the electric field characteristics and colloidal system properties. More specifically, the electric-field driven assembly of colloidal silica (d(p) = 0.32 and 2 μm) in DMSO, a near index matching fluid, is studied numerically over a range of voltages and concentration by means of a continuum thermodynamic approach. The equilibrium (u(f) = 0) and nonequilibrium (u(f) ≠ 0) cases were compared to determine whether fluid motion had an effect on the shape and size of assemblies. It was found that the nonequilibrium case was substantially different versus the equilibrium case, in both size and shape of the assembled structure. This dependence was related to the relative magnitudes of the electric-field driven convective motion of particles versus the fluid velocity. Fluid velocity magnitudes on the order of mm/s were predicted for 0.32 μm particles at 1% initial solids content, and the induced fluid velocity was found to be larger at the same voltage/initial volume fraction as the particle size decreased, owing to a larger contribution from entropic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号