首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
准确测定含铜蚀刻废液中氟含量是含铜蚀刻废液中铜盐回收的关键,本文就含铜蚀刻废液中氟含量离子选择电极测定方法[1~3]进行探讨与验证。通过样品前处理与试验,离子选择电极一次标准加入法测定下限为0.9mg·L-1,离子选择电极标准曲线法测定下限为1.2 mg·L-1;两种方法的相对标准偏差在1.2%~1.7%,两种方法的加标回收率在77%~102%,满足工程应用要求。  相似文献   

2.
郭红  张群 《化学教育》2002,23(10):46-46
本文探讨怎样对铜盐测定实验中的铜废液进行回收利用,探讨如何将CuSCN转化为CuO的方法。1问题的提出 碘量法测定铜盐(或铜合金)中的铜含量,是高师化学专业分析化学实验中的一个基础实验。测定  相似文献   

3.
世界卫生组织规定饮用水中铜的理想含量为0 .0 5mg/L。水样中铜的测定常用二乙基二硫代氨基甲酸钠 (DDTG)萃取光度法[1 ,2 ] ,该方法需用液液萃取 ,不但操作麻烦 ,容易污染环境 ,且引入误差因素多。新亚铜灵试剂 (NHCM)用于铜的测定已有很多报道[3] 。该试剂具有较好的选择性 ,但灵敏度较低 ,很难满足于饮用水中痕量铜的测定的要求。目前固相萃取法已在痕量有机化合物分析中得到广泛应用。但是铜的固相萃取光度法测定还未报道过。本文研究了NHCM与铜的显色反应及WatersSep Park C1 8固相萃取小柱对络合物的固…  相似文献   

4.
2 .2 关于高纯铝中铜测定的补充和建议(1)二乙基二硫代甲酸钠 ,简称DDTC ,通过其硫给予体与铜 (Ⅱ )生成难溶于水的沉淀 ,可用氯仿、四氯化碳等溶剂萃取而溶于有机相中 ,呈黄棕色 ,其吸收峰位于 4 36nm波长处。在四氯化碳或氯仿溶液中 ,摩尔吸光系数达 1.4× 10 4 L·mol-1·cm-1,高于新亚铜灵法近 2倍。反应可在pH 4~ 11范围内进行。考虑到在显色时常需加入柠檬酸铵、EDTA等掩蔽剂 ,常采用在pH 9~ 10的氨性介质中进行反应。此方法早在 2 0世纪 5 0年代已应用于铝及铝合金的分析[3 ,4 ] 。如果由于各种原因 ,不便采…  相似文献   

5.
铜-铬天青S-十二烷基苯磺酸钠褪色光度法测定痕量钡   总被引:1,自引:0,他引:1  
刘佳铭  蓝毅斌  林璇 《分析化学》2002,30(9):1148-1148
1 引  言测定痕量钡有Ba 偶氮氯膦 Cu 邻菲咯啉 (phen) (ε≈ 1.0× 10 5L·mol- 1 ·cm- 1 )、Ba 偶氮氯膦 Zn Phen(1.8×10 5L·mol- 1 ·cm- 1 和Ba 联吡啶 间溴偶氮酸 (1.5× 10 5L·mol- 1 ·cm- 1 )等多元离子缔合光度法 ,邻氨基苯磺酸S、偶氮胂III、金属钛和二苯卡巴腙 (检出限 :均约为 10 - 6g mL)等光度分析法 ,以及催化褪色光度法 (4 .0× 10 - 1 1 g mL)等。实验观察到 ,在pH =5 .40弱酸性介质中和加热条件下 ,钡能使 [Cu(R) 4]2 +·[(DBS) 2 ]2 - (R为铬天…  相似文献   

6.
对4种金属离子[铜(Ⅱ),镧(Ⅲ),铀(Ⅵ)及铈(Ⅳ)]在双水相液-液萃取体系[聚乙二醇2000(PEG)-(NH4)2SO4-锌试剂]中的萃取行为,特别是影响萃取的条件(包括溶液的酸度,锌试剂用量;硫酸铵加入量及有无表面活性剂存在等)作了研究。结果表明,铜(Ⅱ)在pH3~8的条件下,以锌试剂螯合物的形态被定量萃取进入PEG相,萃取率在95%以上;镧(Ⅲ)在pH1~7之间不被萃取,仍以离子状态留在下层水相中;而铀(Ⅵ)及铈(IV)在pH1~11范围内萃取不完全,萃取率在30%~65%之间。试验表明,在pH6的条件下,铜(Ⅱ)可与共存的镧(Ⅲ)定量分离,铜(Ⅱ)进入PEG相的萃取率在95.6%~98.3%之间,而共存的镧(Ⅲ)仅有4.5%~5.1%进入PEG相中。对锌试剂作为螯合剂与上述4种金属离子在萃取过程的反应机理作了初步探讨。  相似文献   

7.
草甘膦[N-(磷酸甲基)-甘氨酸]是一种除草活性高的有机磷农药,其生产过程产生的废液成分复杂,有机物和盐含量高,无害化处理和资源化利用难度大。本文综述了2000年至今焚烧、高级氧化、吸附、化学沉淀和膜分离技术等国内外处理草甘膦废液主要工艺的原理、性能和优缺点。焚烧、高级氧化技术及生化法处理草甘膦废水的选择性较低,不利于草甘膦废水的资源化利用。吸附法普遍存在吸附剂吸附容量小的问题,开发吸附量大、成本低廉且易循环利用的吸附剂是草甘膦废液处理工业应用的发展方向。化学沉淀法在高盐、高总磷和高化学需氧量(Chemical oxygen demand,COD)废水环境中分离性能优异,但产生大量成分复杂的污泥,需进行二次处理。采用膜组合方法对废液进行除杂浓缩,可有效回收有价产品,截留有害物质,但因废水成分复杂,单独使用膜技术处理草甘膦废水不能完全达到处理指标。液膜、聚合物包容膜等新型膜技术稳定性好、使用寿命长、操作简便和环境友好等,在草甘膦等农药行业中高盐有机废水的绿色经济处理和有价物高值回收利用等领域展示了广阔的应用前景。  相似文献   

8.
以2-[N,N-二(2-吡啶甲基)氨甲基]-6-醛基-4-甲基苯酚(L)为配体,合成了2个单核铜配合物[CuL(CH3CN)(ClO4)]ClO4(1)和cis-[CuL(NCS)2]·0.5C4H8O2(2),对它们进行了紫外、红外、质谱、元素分析和单晶结构表征。2个配合物都属于单斜晶系,每个铜均为扭曲的八面体构型。作为四齿配体,L通过2个吡啶氮原子,1个叔胺氮原子和1个酚氧原子和铜离子配位。在配合物1中,乙腈和1个ClO4-参与配位,而在配合物2中2个硫氰根离子为顺式配位。  相似文献   

9.
铜是钼精矿、工业氧化钼、钼铁等钼系列产品中的有害杂质元素,会影响后序加工产品的质量[1]。钼系列产品中,正在实施的测定铜的分析方法有原子吸收光谱法、有机试剂萃取-新铜试剂光度法[2-3],这些方法需要使用精密仪器或有毒的有机试剂。在厂矿实验室例行分析中,希望采用快速环保的分析方法,以满足生产检验需求。双环己酮草酰二腙光度法是测定微量铜的常用方法,优点明显[4-6]。但在钼系列产品中的应用至今未见报道。  相似文献   

10.
用取代苯乙酮基β-二酮与醋酸铜作用合成了双[取代苯乙酮基β-二酮基]合铜(Ⅱ)配合物1—3。后者与氨基脲作用,得到相应的缩氨脲4—6。  相似文献   

11.
金属铜表面的三维齿状图形的化学微加工   总被引:3,自引:0,他引:3  
金属铜表面的三维齿状图形的化学微加工;约束刻蚀剂层技术(CELT);化学刻蚀  相似文献   

12.
A series of beta-diketone ligands, R(1)COCH(2)COR(2) [tmhdH (R(1) = R(2) = C(CH(3))(3)); tfacH (R(1) = CF(3); R(2) = CH(3)); hfacH (R(1) = R(2) = CF(3))], in combination with tert-butyl peracetate (t-BuPA), have been investigated as etchant solutions for dissolution of copper metal into carbon dioxide solvent. Copper removal in CO(2) increases in the order tfacH < tmhdH < hfacH. A study of the reactions of the hfacH/t-BuPA etchant solution with metallic copper and zinc was conducted in three solvents: scCO(2) (supercrical CO(2)); hexanes; CD(2)Cl(2). The etchant solution/metallic zinc reaction produced a diamagnetic Zn(II) complex, which allowed NMR identification of the t-BuPA decomposition products as tert-butyl alcohol and acetic acid. Gravimetric analysis of the amount of zinc consumed, together with NMR studies, confirmed the 1:1:2 Zn:t-BuPA:hfacH reaction stoichiometry, showing t-BuPA to be an overall two-electron oxidant for Zn(0). The metal-containing products of the copper and zinc reactions were characterized by elemental analysis, IR spectroscopy, and, as appropriate, NMR spectroscopy and single-crystal X-ray diffraction [trans-M(hfac)(2)(H(2)O)(CH(3)CO(2)H) (1, M = Cu; 2, M = Zn)]. On the basis of the experimental results, a working model of the oxidative dissolution reaction is proposed, which delineates the key chemical variables in the etching reaction. These t-BuPA/hfacH etchant solutions may find application in a CO(2)-based chemical mechanical planarization (CMP) process.  相似文献   

13.
Journal of Solid State Electrochemistry - Mn-rich layered Lix(Mn,Ni,Ti)O2 was synthesized by Na/Li ion exchange of a P3-Na0.7(Mn,Ni,Ti)O2 precursor. The combined chemical analysis with the ICP-AES,...  相似文献   

14.
ESCA and ESR studies on TMI incorporating alumina-boria catalyst systems for CO conversion show the presence of carbidic phase and no valence change of the incorporated copper in the spent catalyst.  相似文献   

15.
《Analytical letters》2012,45(5):929-940
ABSTRACT

A bead injection system for copper determination is proposed. Chelex-100 resin beads are introduced in the system as a suspension that is trapped in the Jet Ring Cell. The passage of the sample zone by the beads promotes the sorption of Cu(II). When the colorimetric reagent (APDC) perfuses the beads it reacts with copper ions, forming a colored complex that is monitored at 436 nm. After the measurement, the spent beads are sent to waste and a new portion of fresh beads is trapped in the system. The bead injection system is versatile and can be used to concentrate analyte in different sample volumes, permitting determinations of a wide range of copper concentrations. The detection limit is 0.5 μg l-1 with a 500 μl sample, and 1.2 μg l-1 with a 100 μ1 sample.  相似文献   

16.
结果表明,LixNi0.3Co0.7O2具有六方晶系R3-m空间群结构。当X=1,0.315时,其晶胞参数分别为a=2.826nm,c=14.130nm和a=0.2808nm,c=1.4253nm;MO6(M=Ni,Co)八面体中M-O平均距离分别为0.1941nm和0.1933nm。XPS分析结果表明LIxNi0.3CO0.7O2表面存在Li2O,同时探讨了其中过渡金属离子的3d电子结构变化。  相似文献   

17.
In this work a novel unbreakable sol-gel-based in-tube device for on-line solid phase microextraction (SPME) was developed. The inner surface of a copper tube, intended to be used as a high performance liquid chromatography (HPLC) loop, was electrodeposited by metallic Cu followed by the self assembled monolayers (SAM) of 3-(mercaptopropyl) trimethoxysilane (3MPTMOS). Then, poly (ethyleneglycol) (PEG) was chemically bonded to the -OH sites of the SAM already covering the inner surface of the copper loop using sol-gel technology. The homogeneity and the porous surface structure of the SAM and sol-gel coatings were examined using the scanning electron microscopy (SEM) and adsorption/desorption porosimetry (BET). The prepared loop was used for online in-tube SPME (capillary microextraction) of some selected polycyclic aromatic hydrocarbons (PAHs), as model compounds, from the aquatic media. After extraction, the HPLC mobile phase was used for on-line desorption and elution of the extracted analytes from the loop to the HPLC column. Major parameters affecting the extraction efficiency including the sample flow rate through the copper tube, loading time, desorption time and sample volume were optimized. For investigating the sorbent efficiency, four loops based on the copper tube itself, the copper tube after electrodeposition with Cu and the tubes with the SAMs and SAMs-sol-gel coating were made and compared. The SAMs-sol-gel coated loop clearly shows a prominently lead of at least 20-100 times of higher efficiency. The linearity for the analytes was in the range of 0.01-500 μg L(-1). Limit of detection (LOD) was in the range of 0.005-0.5 μg L(-1) and the RSD% values (n=5) were all below 8.3% at the 5 μg L(-1) level. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples were from 90 to 104%. The prepared loop exhibited long life time due to its remarkable solvent and mechanical stability. Different solvents such as methanol, acetonitrile and acetone were passed through the loop for many days and it was also used for more than 100 extractions/desorption of the selected analytes and no decrease in the peak areas was observed.  相似文献   

18.
Regeneration of a Solution for Electroless Copper Plating   总被引:1,自引:0,他引:1  
The possibility of electrochemical regeneration of a solution for electroless copper plating by membrane electrolysis was studied. The conditions of anodic dissolution of copper in a spent solution for electroless copper plating, under which the concentration of copper ions increases at a rate exceeding by an order of magnitude that of their deposition in the course of electroless copper plating, were examined. A scheme for regeneration of spent solutions for electroless copper plating was suggested.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 4, 2005, pp. 586–590.Original Russian Text Copyright © 2005 by Turaev, Kruglikov.  相似文献   

19.
The binding of copper(II) to apoazurin has been probed by isothermal titration calorimetry in cholamine buffer at pH 7.0. The standard enthalpy change was determined to be -10.0 +/- 1.4 kcal/mol. Each calorimetric trace reveals an initial exothermic phase followed by an endothermic phase. The calorimetric data could be fit to a kinetic model involving a bimolecular combination of copper(II) and apoazurin in an exothermic process (k = 2 +/-1 x 103 M-1 s-1, DeltaH degrees = -19 +/- 3 kcal/mol) to form an intermediate that spontaneously converts to Cu(II)-azurin in an endothermic process (k = 0.024 +/- 0.01 s-1, DeltaH degrees = +9 +/- 3 kcal/mol). These data suggest that copper(II) first combines with apoazurin in an irreversible process to form an intermediate that converts to copper(II)-azurin in a process driven by the release of water. The overall standard free energy of copper(II) binding to apoazurin is estimated to be -18.8 kcal/mol.  相似文献   

20.
建立了用于混合铜矿石中自由氧化铜测定的方法。试样用含亚硫酸钠(6g/L)的硫酸(10%)溶液浸取2h,选择性溶解铜氧化物,过滤并煮沸滤液,用去离子水稀释后电解。溶液中的铜离子电积至阴极铂网上。用火焰原子吸收光谱法检测残余于电解后液中的铜离子;同时用硝酸(1+1)溶解铂网上的铜,并用火焰原子吸收光谱法检测与阴极铜共电积的杂质元素含量,用铂阴极差重加上电积后液残余铜含量并减去共电积的杂质元素含量可计算出氧化铜矿中酸溶铜含量。与碘量法相比,不用肉眼观察颜色变化确定终点,人为误差小,结果稳定、准确。通过对加拿大氧化铜矿标准物质AMIS0050进行测定(n=12),方法准确度可靠。并选取15批次的氧化铜矿检测,与经典碘量法比对,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号