首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
敬钊毒素-I(JZTX-I)是一种能够抑制心肌钠通道失活的新型蜘蛛神经毒素,该文结合高效液相色谱与色氨酸荧光测定技术研究了JZTX-I的磷脂膜结合活性。脂质体共沉淀实验表明,JZTX-I具有不依赖于带负电荷磷脂组成的生物膜结合活性。当加入由酸性或中性磷脂构成的脂质体后,JZTX-I能够分别产生6.4和4.7nm的蓝移以及7.4和8.0nm的红移激发漂移,显示JZTX-I能够插入磷脂膜,同时该分子疏水表面的色氨酸残基处于一个运动受限的界面区域。荧光淬灭实验进一步证实,与脂质体结合能够减少该毒素分子表面色氨酸残基的溶剂暴露。该研究结果为阐明JZTX-I的离子通道门控调节机制提供了新的信息。  相似文献   

2.
曾雄智  皮建辉  梁宋平 《色谱》2007,25(6):825-829
敬钊毒素-I(JZTX-I)是一种能够抑制心肌钠通道失活的新型蜘蛛神经毒素,该文结合高效液相色谱与色氨酸荧光测定技术研究了JZTX-I的磷脂膜结合活性。脂质体共沉淀实验表明,JZTX-I具有不依赖于带负电荷磷脂组成的生物膜结合活性。当加入由酸性或中性磷脂构成的脂质体后,JZTX-I能够分别产生6.4和4.7 nm的蓝移以及7.4和8.0 nm的红移激发漂移,显示JZTX-I能够插入磷脂膜,同时该分子疏水表面的色氨酸残基处于一个运动受限的界面区域。荧光淬灭实验进一步证实,与脂质体结合能够减少该毒素分子表面色氨酸残基的溶剂暴露。该研究结果为阐明JZTX-I的离子通道门控调节机制提供了新的信息。  相似文献   

3.
In this work, using atomic force microscopy (AFM), we have studied the influence of the temperature on the properties of the surface planar bilayers (SPBs) formed with: (i) the total lipid extract of Escherichia coli; (ii) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPC) (1:1, mol/mol); and, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol-amine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol). According to the height profile analysis we performed, the height of the SPBs of DMPC:POPC were temperature dependent. Separated domains were observed in the SPBs of the POPE:POPG mixture and the E. coli lipid extract. The implication of those domains for the correct insertion of membrane proteins into proteoliposomes is discussed.  相似文献   

4.
sP-B is a synthetic analogue of the natural lipopeptide antibiotic polymyxin B (PxB) that maintains the ability of the parent compound to form vesicle-vesicle contacts and induce lipid exchange. Exchange is selective, and only monoanionic phospholipids such as 1-palmitoyl-2-oleoyl-glycero-sn-3-phosphoglycerol (POPG) are transferred, whereas dianionic phospholipids such as 1-palmitoyl-2-oleoyl-glycero-sn-3-phosphate (POPA) are not, as shown by fluorescence experiments based on the excimer/monomer ratio of pyrene-labeled phospholipids. Synthetic fluorescent analogues of sP-B are used to investigate the peptide position and orientation in the intermembrane contacts: sP-Bw, an analogue that contains D-tryptophan (D-Trp) instead of the naturally occurring D-phenylalanine, and sP-Bpy, incorporating a pyrene group at the N-terminus. Tryptophan fluorescence, anisotropy, and quenching measurements performed with sP-Bw indicate that the peptide binds and inserts in anionic vesicles of POPG and POPA. However, significant differences are seen depending on the lipid composition, as also demonstrated by fluorescence resonance energy transfer (FRET) experiments from Trp to 7-nitro-2-1,3-benzoxadiazol (NBD) groups at the interface. Intermolecular FRET using sP-Bw as the donor and sP-Bpy as the acceptor indicates self-association of the peptide, possibly forming dimers, when bound to POPG vesicles at concentrations that induce the vesicle-vesicle contacts.  相似文献   

5.
Fluorescence quenching measurements have been made for a series of di-walled and tetra-walled molecular umbrellas having moderate (i.e., hydroxyl-) and strong (i.e., sulfate-) facial hydrophilicity, using Cascade Blue as the fluorophore. Through the use of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotempocholine, 1-palmitoyl-2-stearoyl-(5-DOXYL)-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-stearoyl-(12-DOXYL)-sn-glycero-3-phosphocholine as fluorescence quenchers, evidence has been obtained for a membrane-bound state in which the umbrella molecules lie on the surface of the lipid bilayer. In the case of the sulfated molecular umbrellas, evidence has also been obtained for a subpopulation in which the fluorophore lies deeper within the membrane. Probable structures for the shallow-lying and deep-lying molecular umbrellas are discussed.  相似文献   

6.
Rojo N  Gómara MJ  Busquets MA  Alsina MA  Haro I 《Talanta》2003,60(2-3):395-404
The membrane-interacting properties of two potential epitopes of the GB virus C/Hepatitis G virus, located respectively at the regions (99-118) of the E2 structural protein and (440-460) of the NS3 non-structural protein were studied. Changes in the intrinsic fluorescence of Trp and Tyr residues after the addition of DPPC-LUV revealed that the peptide-membrane interaction was optimal above the gel-liquid crystalline transition temperature of the lipid. Differential scanning calorimetry studies showed that the E2 peptide incorporated into lipid bilayers perturbs the packing of lipids and affects their thermotropic properties. Moreover, the 20-mer structural peptide induced a slow leakage of vesicular contents at 55 degrees C.  相似文献   

7.
The mechanism of interaction between a model antimicrobial peptide and phospholipid unilamellar vesicle membranes was studied using fluorescence spectroscopy, fluorescence lifetime measurements, and light scattering. The peptide, a mellitin mutant, was labeled at position K14 with the polarity-sensitive probe AlexaFluor 430. The kinetics of the interaction of this derivative with various concentrations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) vesicles was examined. Our work unveiled two novel aspects of peptide-lipid interactions. First, the AB plot or phasor analysis of the fluorescence lifetime studies revealed at least three different peptide states, the population of which depended on the lipid to peptide (L:P) concentration ratio. Second, complex fluorescence kinetics were observed over extended time-scales from 30 s to 2 h. The extended kinetics was only observed at particular lipid concentrations (L:P ratios 20:1 and 10:1) and not at others (30, 40, 50 and 100:1 L:P ratio). Analysis of the complex kinetics revealed several intermediates. We assign these to distinct states of the peptide formed during helix insertion into the vesicle membrane that are intermediate to lytic pore formation.  相似文献   

8.
Thermoreversible gelation of polymers driven by the coil-to-helix transition in chain conformation is theoretically studied. For pairwise association of single helices, there are three fundamental types of self-assemblies as a result of competition between helix growth and helix association: Type I network (random coils connected by paired short helices), Type II network (helices connected by short random coils) and pairing (pairs of long helices without branching). Two distinct phase diagrams showing sol/gel transition and coil/helix transition are derived for weak and strong association.  相似文献   

9.
Frank and coworkers [N. J. Cho, S. J. Cho, K. H. Cheong, J. S. Glenn and C. W. Frank, J. Am. Chem. Soc., 2007, 129, 10050] investigated what happens when lipid vesicles made of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), which serves as a mimic for cell membranes, are exposed to the amphipathic helix peptide, PEP1, which is of the same type found in hepatitis C virus. Using atomic force field microscopy and quartz crystal microbalance measurements they presented evidence that the vesicle is transformed into a lipid bilayer. We use surface plasmon resonance (SPR) microscopy to follow this process in real time. We find an induction period (intermediate state) of approximately 10-min duration between the time of membrane binding and membrane rupture. The SPR data support the interpretation that a lipid bilayer is formed and allow us to put forward a mechanism for the vesicle-rupture event. As a side benefit, we demonstrate how to build two-dimensional lipid patterns on a gold surface using this vesicle-rupture process.  相似文献   

10.
Antimicrobial peptides (AMPs) selectively disrupt bacterial cell membranes to kill bacteria whereas they either do not or weakly interact with mammalian cells. The orientations of AMPs in lipid bilayers mimicking bacterial and mammalian cell membranes are related to their antimicrobial activity and selectivity. To understand the role of AMP-lipid interactions in the functional properties of AMPs better, we determined the membrane orientation of an AMP (MSI-78 or pexiganan) in various model membranes using sum frequency generation (SFG) vibrational spectroscopy. A solid-supported single 1,2-dipalmitoyl-an-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) bilayer or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) bilayer was used as a model bacterial cell membrane. A supported 1,2-dipalmitoyl-an-glycero-3-phosphocholine (DPPC) bilayer or a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was used as a model mammalian cell membrane. Our SFG results indicate that the helical MSI-78 molecules are associated with the bilayer surface with ~70° deviation from the bilayer normal in the negatively charged gel-phase DPPG bilayer at 400 nM peptide concentration. However, when the concentration was increased to 600 nM, MSI-78 molecules changed their orientation to make a 25° tilt from the lipid bilayer normal whereas multiple orientations were observed for an even higher peptide concentration in agreement with toroidal-type pore formation as reported in a previous solid-state NMR study. In contrary, no interaction between MSI-78 and a zwitterionic DPPC bilayer was observed even at a much higher peptide concentration (~12,000 nM). These results demonstrate that SFG can provide insights into the antibacterial activity and selectivity of MSI-78. Interestingly, the peptide exhibits a concentration-dependent membrane orientation in the lamellar-phase POPG bilayer and was also found to induce toroidal-type pore formation. The deduced lipid flip-flop from SFG signals observed from lipids also supports MSI-78-induced toroidal-type pore formation.  相似文献   

11.
By means of fluorescence and scanning force microscopy (SFM), we investigated the phase behavior of lipid monolayers composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (5/2/3) with either alpha-hydroxylated or nonhydroxylated galactocerebroside. Fluorescence images of lipid monolayers at the air-water interface demonstrate that, independent of the lipid mixture, phase separation occurs at low surface pressure up to 4-6 mN m(-1), while an almost homogeneous phase is observed at larger surface pressures. However, by means of SFM of lipid monolayers transferred by the Langmuir-Blodgett technique at around 30 mN m(-1), nanometer-sized domains became discernible in those lipid mixtures that contained galactocerebroside, while, in that without a glycolipid, no such domain formation was visible. Moreover, the alpha-hydroxy group of the galactocerebroside alters the size and the total area of the domains significantly.  相似文献   

12.
Interactions between low-molar mass analytes and phospholipid membranes were studied by liposome electrokinetic capillary chromatography (LEKC). The analytes were pesticides, some degradation products, and compounds associated with the manufacture of pesticides. Negatively charged liposome dispersions with different zwitterionic lipids (PC) were applied to the determination of retention factors (k) of 15 charged and uncharged compounds. The liposome dispersions consisted of 80:20 mol% of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/POPS, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS. Retention factors were calculated from the effective electrophoretic mobilities of the analytes under LEKC and CZE conditions and from the effective electrophoretic mobilities of the liposomes, determined by CZE with a polyacrylamide-coated capillary. Determining the liposome mobilities in this way proved to be a good alternative to the conventional method employing a liposome marker compound. The log k values of the analytes for the different liposome dispersed phases were correlated with one another. In addition, correlation curves were determined between log k and calculated octanol-water partition coefficients. The results showed that the zwitterionic phospholipid in the liposome has a major impact on the interactions between the tested compounds and the lipid membranes.  相似文献   

13.
The lateral packing properties of phospholipids that surround transmembrane proteins are fundamental in the biological activity of these proteins. In this work, Langmuir monolayers of one such lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), are studied with a combination of pressure-area isotherm analysis, Brewster angle microscopy, and atomic force microscopy of extracted films. The analysis reveals a sequence of phase transitions LE-LC-LC' occurring in a narrow packing range. The lateral pressures and area densities of these phases provided meanings for the packing requirements in the annular lipid region of typical transmembrane proteins.  相似文献   

14.
The membrane destabilizing and fusogenic properties of the synthetic peptide VP3(110-121), corresponding to an immunogenic sequence of the hepatitis A virus (HAV) VP3 capsid protein, were studied. By tryptophan fluorescence and acryalmide quenching it was demonstrated that the peptide binds liposomes of POPC-SM-DPPE (47 + 39 + 14) and POPC-SM-DPPE-DOTAP (40 + 33 + 12 + 15) and penetrates the membrane, at both neutral and acidic pH (POPC = 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM = sphingomyelin; DPPE = 1,2-dipalmitoylphosphatidylethanolamine; DOTAP = 1,2-dioleoyl-3-trimethylammoniumpropane). VP3(110-121) did not have membrane-destabilizing properties at neutral pH. Acid-induced destabilization of the vesicles was demonstrated by fluorescence techniques and dynamic light scattering. VP3(110-121) induced aggregation of POPC-SM-DPPE-DOTAP (40 + 33 + 12 + 15) vesicles, lipid mixing and leakage of vesicle contents, all consistent with fusion of vesicles. In POPC-SM-DPPE (47 + 39 + 14) vesicles, at acidic pH, VP3(110-121) induced membrane destabilization with leakage of contents but without aggregation of vesicles or lipid mixing. The peptide only showed fusogenic properties when bound to the vesicles at neutral pH before acidification to pH below 6.0, and no effect was seen if the peptide was added to vesicles already set at acidic pH. These results may have physiological significance in the mechanism of infection of host hepatic cells by HAV.  相似文献   

15.
Pridmore CJ  Mosely JA  Sanderson JM 《The Analyst》2011,136(12):2598-2605
The identification of phosphocholine and phosphoethanolamine lipids by MALDI TOF/TOF, including characterisation of the headgroup and delineation of the acyl chain at each position of the glycerol backbone, has been explored using lipids representative of each type. The relative intensities of fragments involving the neutral loss of one or other of the acyl chains from ion adducts of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) were compared. For POPC and POPE, a statistical preference for the loss of the chain from the sn-1 position was observed in the presence of lithium. For OPPC this selectivity was reversed for one of the fragments. In the absence of lithium, fragmentation was favoured at the sn-2 position for all lipids. In all cases, spectra obtained in the presence of lithium yielded more intense product ion peaks. Although Collision Induced Dissociation (CID) could be used for complete lipid characterisation, LIFT? was found to be a better method due to the presence of a greater number of distinguishing product ion peaks and a better shot-to-shot reproducibility of peak intensities.  相似文献   

16.
The benefits of gradient techniques in the study of lipid membranes are demonstrated on a sample of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC) liposomes embedded with ibuprofen. Most techniques from gradient NMR spectroscopy on solution samples are directly applicable to membrane samples subjected to magic angle spinning (MAS). Gradient-enhanced homo- and heteronuclear chemical shift correlation techniques were used to make resonance assignments. Gradient NOESY experiments provide insight into the location and dynamics of lipids, ibuprofen and water. Application of gradients not only reduces experiment time but also the t(1) noise in the multi-dimensional spectra. Diffusion measurements with pulsed field gradients characterize lateral movements of lipid and drug molecules in membranes. The theoretical framework for data analysis of MAS diffusion experiments on randomly oriented multilamellar liposomes is presented.  相似文献   

17.
The membrane transport protein lactose permease (LacY), a member of the major facilitator superfamily containing 12 membrane-spanning segments connected by hydrophilic loops, was reconstituted in liposomes whose composition was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol in a 3:1 molar ratio. The structural order of the lipid membranes, in the presence and absence of LacY, was assessed using steady-state fluorescence anisotropy. The features of the anisotropy curves obtained with 1,6-phenyl-1,3,5-hexatriene and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate suggest a surface effect of LacY on the membranes. Atomic force microscopy imaging of supported planar bilayers (SPBs) deposited onto mica was used to examine the effect of LacY on the nanostructure of the phospholipid matrix. Two separated domains were observed in SPBs formed from pure phospholipid mixture. Protein assemblies segregated from the rest of the matrix were observed after the extension of proteoliposomes. The effect of the protein on the electrostatic surface potential of the bilayer was also examined using a fluorescent pH indicator, 4-heptadecyl-7-hydroxycoumarin. Changes in surface potential were enhanced in the presence of the substrate (i.e., lactose). Taken together the results indicate that LacY is segregated into the phospholipid matrix and has moderate effects on the acyl chain order of the bilayers. The changes in surface electrical properties of the bilayers suggest a role for the phospholipid headgroups in proton transfer to the amino acids involved in substrate translocation.  相似文献   

18.
The precipitation of calcium oxalate monohydrate (COM) was monitored at a Langmuir monolayer containing lipid raft domains. The raft-forming monolayer consists of a 2:1:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/sphingomyelin/dihydrocholesterol, where the raft liquid ordered phase is enriched in sphingomyelin and the sterol. COM crystals, monitored by Brewster angle microscopy, appear at the phase boundary between the raft domains and the expanded phase.  相似文献   

19.
We utilize supported lipid/protein bilayers to probe the dimerization of transmembrane (TM) helices in a membrane environment. The bilayers are formed by incubating substrates with liposomes containing the proteins, and are characterized using fluorescence recovery after photobleaching and imaging Forster resonance energy transfer (FRET). We show that the FRET signal, as a measure of TM helix dimerization, is the same in suspended liposomes and in surface-supported bilayers. This work is the first step toward the development of a new tool for probing the association of TM helices in lipid bilayers.  相似文献   

20.
Alpha-sheet is believed to be a significant structural component, formed in the fibrillation process of the amyloid peptide. However, the knowledge about the role of α-sheet played in the amyloidosis and toxicity is lack. In this work, we modified a short peptide derived from the core region of human islet amyloid polypetide(hIAPP, hIAPP18-27) with an alternating D-amino acid replacement and investigated the effects of the L/D alternating peptide on the fibrillar aggregation and the membrane damage of hIAPP using NMR, ThT fluorescence assay, circular dichroism(CD), transmission electron microscopy(TEM) and leakage assay, and compared the results with those of hIAPP18-27without D-amino acid replacement. We show that the short peptide with alternating L- and D-amino acids forms an α-sheet structure and is more potent in promoting the fibrillation of hIAPP and reducing the ability of hIAPP to disrupt the membrane composed of POPG and POPC[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine] 1:4 lipids than the short peptide with all L-amino acids in a random coil structure. The higher potency of the D/L alternating peptide in these activities is attributed to its ability to induce the α-sheet-like structure in the core region of hIAPP and block the interaction of hIAPP with the membrane more effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号