首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of binuclear CuII complexes [Cu2XL] n+ having two copper(II) ions bridged by different motifs (X = OH, MeCO2 , or Cl) have been prepared using the ligands: H2L1 = 4-methyl-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L2 = 4-nitro-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L3 = 4-methyl-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol and H2L4 = 4-nitro-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol. The complexes have been characterized by spectroscopic, analytical, magnetic and electrochemical measurements. Cryomagnetic investigations (80–300 K) revealed anti-ferromagnetic exchange between the CuII ions (–2J in the range –50 to –182 cm–1). The strength of anti-ferromagnetic coupling lies in the order: OAc > OH > Cl. Cyclic voltammetry revealed the presence of two redox couples, assigned to CuII/CuII/CuII/CuI/CuI/CuI. The first reduction potential is sensitive to electronic effects from the aromatic ring substituents and steric effect on the donor nitrogens (side arm) of the ligand systems.  相似文献   

2.
The uranium(VI) peroxo complexes containing aroylhydrazones ligands having composition [UO(O2)L-L(NO3)2]·H2O (where L-L = Benzoic acid[1-(Furan-2-yl)methylene] hydrazide, Benzoic acid[(thiophene-2-yl)methylene] hydrazide, Benzoic acid[1-(thiophene-2-yl)ethylidene] hydrazide, Benzoic acid(phenylmethylene) hydrazide, Benzoic acid[1-(anisol-3-yl)methylene] hydrazide and Benzoic acid[(p-chlorobenzyl)methylene] hydrazide are reported. The complexes were characterized by various physico-chemical techniques, viz. elemental analysis, molar conductivity, magnetic susceptibility measurements, infra red, electronic, mass spectral and TGA/DTA studies. These studies revealed that complexes are non-electrolytes and diamagnetic in nature. The ligands are bound to metal in a bidentate mode. Thermal analysis results provide conclusive evidence for the presence of water molecules in the complexes. Mass spectra confirm the molecular mass of the complexes. Antifungal activity of complexes revealed enhanced activity of complexes as compared to the corresponding ligands.  相似文献   

3.
Five complexes [WO(NCS)4L–L] (where L–L = benzoic acid[1-(Furan-2-yl)methylene]hydrazide(BFMH), benzoic acid[(thiophen-2-yl)methylene]hydrazide(BTMH), benzoic acid[1-(thiophen-2-yl)ethylidene]hydrazide(BTEH), benzoic acid(phenylmethylene)hydrazide(BPMH) and benzoic acid[1-(anisol-3-yl) methylene]hydrazide(BAMH)) have been prepared by reaction of ammonium tetraisothiocyanatodioxotungstate(VI) with the corresponding ligand in aqueous medium in the presence of hydrochloric acid. The complexes have been characterized by elemental analysis, molar conductivity, magnetic moment measurements, IR, electronic spectra, thermogravimetric analysis TGA/DTA and 1H NMR.  相似文献   

4.
Summary A series of metal ion complexes of the thiosemicarbazone, 3-azabicyclo[3.2.2]nonane-3-thiocarboxylic acid 2-[1-(6-methyl-2-pyridinyl)ethylidene]hydrazide (6 MLH) have been prepared and spectrally characterized. The ligand undergoes deprotonation to coordinatevia the thione sulphur, the imine nitrogen and the pyridyl nitrogen. A single anionic ligand such as Cl, Br and NO3 completes the bonding to the CuII and NiII centre. The compound derived from CoCl2 contains two 6 MLH ligands bound to a CoII centre and a CoCl 4 2– counter ion. Complexes derived from perchlorate salts may feature 6 MLH, 6 ML, or both with the CoII being oxidized to CoIII. The solids were characterized by i.r., electronic and e.s.r. spectroscopy. In addition, electronic and e.s.r. spectra of their chloroform solutions were recorded.NATO Fellow, on leave from Istanbul Medical Faculty, Istanbul University.  相似文献   

5.
Two Schiff base ligands, 2-{E-[(5-phenyl-6H-1,3,4-thiadiazin-2yl)imino]methyne}-1-naphthol (L1H) and 5-nitro-2-{[(5-phenyl-6H-1,3,4-thiadiazin-2-yl)imino]methyne}phenol (L2H) have been prepared from 5-phenyl-6H-1,3,4-thiadiazin-2-amine (A), 2-hydroxynaphthaldehyde (1) and 2-hydroxy-5-nitrobenzaldehyde (2) Mononuclear Co(II), NiII and CuII complexes of the ligands have been prepared by using CoII, NiII and CuII salts with a 1:2 metal:ligand ratio. It was determined that the bidentate behavior of the ligands is accomplished via the phenolic oxygen and the azomethine nitrogen atoms. The structures of the ligands and their complexes were identified by using elemental analyses, i.r., 1H-n.m.r. spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (t.g.a.).  相似文献   

6.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

7.
The template reaction of {bis[(S)-2-(aminomethyl)pyrrolidine]}copper(II) with formaldehyde, nitroethane, and base in MeOH yields optically pure {1,7-bis[(S)-pyrrolidin-2-yl]-4-methyl-4-nitro-2,6-diazaheptane}- copper(II) ([Cu((S,S)-mnppm)]2+) in high yield. The same reaction with rac-2-(aminomethyl)pyrrolidine is also described. Preparative details and spectroscopic and electrochemical properties of the CuII complexes and of the free ligands are reported and compared with structural, spectroscopic and electrochemical data of the CuII complex of the unsubstituted parent ligand 1,7-bis[(S)-pyrrolidin-2-yl]-2,6-diazaheptane (ppm). The crystal structure of [Cu(ppm)]Cl ClO4 has been determined by X-ray diffraction methods.  相似文献   

8.
Summary The heterobinuclear complex [FeIICuII(ttha)]2– (1) (ttha6– = triethylenetetraminehexaacetate), exhibits the same two-nitrogen per metal coordination of the related homobinuclear [Cu inf2 supII (ttha)]2– complex, but(1) has a signature broad single derivative e.p.r. line atg = 2.11 with a peak-to-peak width of 182 G. Oxidation to the [FeIIICuII(ttha)] complex by either O2 or H2O2 initiates a rapid cross-binuclear metal exchange forming homobinuclear [Fe inf2 supIII O(ttha)]2– and [Cu inf2 sup– (ttha)]2– products (t 1/2 ca 3.9 s). An isomeric form of [FeIIICuII(ttha)], which has three nitrogen donors bound to CuII and only the remaining iminodiacetate fragment bound to FeIII, rearranges much more slowly (t 1/2 ca 4.8 h).  相似文献   

9.
A tetranuclear CuICuII mixed oxidation state complex, [CuII 2(μ-I)2CuI 2(μ-I)2(phenP)2I2] (phenPE: 2-(1H-pyrazol-1-yl)-1,10-phenanthroline), has been prepared and its crystal structure is determined by X-ray crystallography. In the complex, CuII is a distorted square pyramid and CuI is a distorted trigonal planar coordination environment; CuII and CuI are bridged by iodide. It is rare to form a CuII-iodide bond and for CuII and CuI to be bridged by iodide. In the crystal, there is a slipped ππ stacking between adjacent CuII complexes, which resulted in the formation of the 1-D chain along the c axis. The fitting for the variable-temperature magnetic susceptibility data gave magnetic coupling constant 2J?=??1.16?cm?1 and it may be ascribed to the intermolecular ππ magnetic coupling pathway.  相似文献   

10.
Song  You  Chen  Xue-Tai  Zheng  Chang-Ge  Zhu  Dun-Ru  You  Xiao-Zeng  Weng  Lin-Hong 《Transition Metal Chemistry》2001,26(3):247-251
The crystal structure of the polyhydrazone dioxime-containing dimeric copper(II) (polyhydrazone dioxime: HON=CMe[CMe=NN=CMe] n CMe=NOH) complex, [Cu2(Hboa)2(H2O)2] · (ClO4)2 (1) (H2boa = biacetyl oxime azine) has been determined. Complex (1) contains an unusual six-membered ring, which is composed of two oxime groups and two CuII ions. The variable temperature magnetic susceptibility of (1) in the 5–300 K range has been interpreted in terms of a CuII dimer. The magnetic behavior shows that the bridging six-membered ring mediates very strongly in the antiferromagnetic exchange interaction, with the fitting value J = –361(1) cm–1 and the e.p.r. g-value of 2.193.  相似文献   

11.
Abstract

A new series of 2-((1-furan-2-yl)ethylidene)hydrazono)-4-substitutedphenylthiazol-3(2H)-amines (2a–2o) and their Schiff bases (3a–3o) from 4-nitrobenzaldehyde were synthesized. The chemical structures of all the synthesized compounds were confirmed by their IR, 1H-NMR, 13C-NMR spectroscopy and mass spectrometry. They were screened for their antimicrobial and antifungal activities. Additionally, in vitro cytotoxic acivity of the most active antifungal compound (3o) and ketoconazole was determined in NIH/3T3 cells by MTT assay. Compound 2i (4-{3-Amino-2-[(1-(furan-2-yl)ethylidene)hydrazono]-2,3-dihydrothiazol-4-yl}phenol) showed the greatest antifungal activity among the newly synthesized derivatives. Schiff bases (3c-3n) displayed an undeniable fungicidal action against Candida parapsilosis ATCC 22019 as intense as the reference ketoconazole. In addition, the most active Schiff base 3o (2-[(1-(Furan-2-yl)ethylidene)hydrazono]-N-(4-nitrobenzylidene)-4-(2,3,4-trichloro phenyl)thiazol-3(2H)-amine) showed the highest antifungal activity against both Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22019, and was as potent as ketoconazole. Moreover, compound 3o was found to be non-cytotoxic against NIH/3T3 cells.  相似文献   

12.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

13.
Summary The CoII complex derived from the unsymmetricalbis-Schiff base ligand, 3-[1-[[2-[[(2-hydroxyphenyl)methylene]-amino]ethyl]amino]ethylidene]-6-methyl-2H-pyran-2,4(3H) dione H2(dha, salen), is a catalyst for the autoxidation of aromatic aldehydes. Under ambient condition Co(dha, salen) catalyses the oxidation ofp-anisaldehyde top-anisic acid in quantitative yield (250 turnovers). The presence of Co(dha, salen) also accelerates the co-oxidation ofp-anisaldehyde and styrene (88 turnovers). In the co-oxidation process, styrene is selectively converted to styrene oxide as the major product.  相似文献   

14.
The stability constants of some 1:1 Me2+-complexes of the following five-membered heterocyclic carboxylic acids have been measured in 50 perc. aqueous dioxane (I = 0,1; t = 25°): thiophene-2- (I), 3-phenylisothiazole-5- (II), tetrahydrothiophene-2- (III), furan-2- (IV), pyrrole-2- (V), and tetrahydrofuran-2-carboxylic acid (VI) (table 1 and 2). A comparison of the stability constants of the Cu2+-complexes of acetic acid (VII), benzoic acid (VIII), m-chlorobenzoic acid (IX), p-nitrobenzoic acid (X), and chloroacetic acid (VI) shows that the heterocyclic S and O atoms coordinate with Cu2+, i.e. Cu2+ chelates (structure XII) are formed (Figure 1). NMR. spectra (Fig. 2) give evidence for the coordination of the «aromatic» S atom in the Cu2+ complexes of thiophene-2-carboxylic acid (I), i.e. at least a part of the complexes are chelates. The NMR. spectra of furan-2-carboxylic acid (IV) gave no unequivocal results; in the case of pyrrole-2-carboxylic acid (V) the interaction between Cu2+ and the NH-group is very small (Fig. 4), i.e. a simple carboxylic acid complex is formed.  相似文献   

15.
Li  Tao  Huang  Jin-Wang  Ma  Li  Zhang  Yong-Qing  Ji  Liang-Nian 《Transition Metal Chemistry》2003,28(3):288-291
The supramolecular self-assembly behavior, by hydrogen-bonding, of zinc(II) [Zn(p-CPTPP)], copper(II) [CuII-(p-CPTPP)] complexes [(p-CPTPP) = 5-(p-carboxyl)-phenylene-methanamidophenyl-10,15,20-triphenylporphyrin] were studied by fluorescence spectroscopic titration and by u.v.–vis. spectra. The fluorescence strengthening character was observed in the Zn(p-CPTPP)/CuII(p-CPTPP) system in a fluorescence spectroscopic titration experiment. The formation constant was determined from the fluorescence spectroscopic titration data and the fluorescence strengthening property of the system was discussed using the fluorescence spectrum of the charge-separated state obtained by the method of spline wavelet least squares.  相似文献   

16.
Extended studies by e.p.r. and electronic spectroscopy on the effect of different non-polar solvents, temperature and disulfide concentration on the spectral properties of bis(dithiophosphato)copper(II), Cu[(RO)2PS2]2, complexes [R = Me, Et and i-Pr] are reported. The molar absorptivity and e.p.r. intensity are very sensitive to the shape and size of the remote ligand substituents and increase in the order: Me < Et < i-Pr. The nature of the solvent and time after dissolution are also important regarding the magnitude of the e.p.r. intensity and molar absorptivity which, 1 h after dissolution, do not follow Beer's law. The molar absorptivities obtained at a given CuII(R2–dtp)2 concentration increase in the solvent order: n-hexane < n-heptane < CCl4 < PhMe < PhH < CHCl3. Twenty-four hours after dissolution the same samples exhibit: (i) linearity between absorbance and concentration of CuII(R2–dtp)2; (ii) a significant increase in molar absorptivity which is not equal for all the complexes studied and follows the same substituent and solvent orders. Beer's law is satisfied above 5 × 10–4 M for [(RO)2PS2]2Cu (R = Et, i-Pr) and above 3 × 10–3 M for [(MeO)2PS2]Cu. A significant additional increase, ca. 30–40%, of molar absorptivity, is obtained by increasing the solution temperature from 20 to 50 °C. The molar absorbtivity remains unchanged during 2–3 days after reducing the temperature. Further increase of molecular absorbtivity appears after addition of the corresponding disulfide of dithiophosphate [(RO2)PS2–S2P(RO)2] to CuII[(RO)2PS2]2. The molar absorptivity of Cu[(i-PrO)2PS2]2 increases from 4.8 × 103 cm–1 M–1, 1 h after dissolving the complex up to 2 × 104 cm–1 M–1 after addition of the corresponding disulfide. The observed effects are explained on the basis of a self-redox reaction taking place in this type of sulfur containing copper(II) complexes.  相似文献   

17.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

18.
Two 2-terephthalate (tp) bridged complexes, [Cu2(tp)(pren)4](ClO4)2 (pren = 1,3-diaminopropane) (1) and [Ni2(tp)(pren)4(Him)2](ClO4)2 (Him = imidazole) (2), have been synthesized and characterized by X-ray single-crystal structural analysis. In the discrete dinuclear [Cu2(tp)(pren)4]2+ cation of complex (1), each CuII atom has a square-pyramidal geometry, being coordinated by four nitrogen atoms (avg. 2.031 Å) from two pren ligands at the basal plane and one oxygen atom [2.259(3) Å] from a bis-monodentate tp group at the axial position. In the discrete dinuclear [Ni2(tp)(pren)4(Him)2]2+ cation of complex (2), each NiII center is coordinated by five nitrogen atoms [Ni—N 2.069(3)–2.109(2) Å] from one Him group and two pren groups, and completed by one oxygen atom [Ni—O 2.138(3) Å] from a bis-monodentate tp group to furnish a distorted octahedron. Magnetic susceptibility studies show that the pair of metal atoms, although being separated by >11.5 Å, exhibit weak intramolecular antiferromagnetic interactions in complexes (1) (g = 2.07 and J = –3.4 cm–1) and (2) (g = 2.10 and J = –0.7 cm–1). The electrochemical behaviors of the complexes have also been studied by cyclic voltammogram processes.  相似文献   

19.
Copper(II) Schiff base complexes derived from furan-2-carboxaldehyde, 2-furylmethyl ketone, thiophene-2-carboxaldehyde and methyl-2-thienyl ketone with semicarbazide and thiosemicarbazide have been prepared and characterized by analytical, i.r., electronic, e.s.r. and c.v. spectral data. The electronic spectral d–d band position varies from 744–415nm in pyridine and 872–371nm in DMF. E.s.r. g values lie between 2.1439 and 2.3149 at LNT. All complexes undergo quasi-reversible one-electron electrochemical reduction (CuIII/CuII) in the 0.42–0.52V potential range. The electron transfer is much faster in thiosemicarbazone complexes compared to semicarbazone complexes. All these copper(II) complexes showed increased nuclease activity in presence of oxidant.  相似文献   

20.
The syntheses of two polydentate ligands comprising imidazole donors, 1,3-bis[(4-methyl-5-imidazol-1-yl) ethylideneamino]propan-2-ol (BIPO), 1,3-bis[(4-methyl-5-imidazol-1-yl)ethylideneamino]propane (BIP), and their copper(II) complexes [Cu(BIPO)(ClO4)(H2O)] (NO3) · H2O (1) and [Cu(BIP)(ClO4)](ClO4) · 2H2O (2) are reported. Single-crystal structural analyses show that (1) adopts an elongated octahedral geometry with the axial positions occupied by a perchlorate oxygen atom and an aqua ligand, while (2) adopts a distorted square-pyramidal geometry with the axial positions occupied by a perchlorate oxygen atom. Electronic spectra in aqueous solution indicate that both (1) and (2) adopt square-pyramidal geometry. Cyclic voltammetry in aqueous solution gives reduction waves at –0.07 and –0.08 V versus s.c.e. for (1) and (2), respectively. The low reduction potential and general reversibility of the redox reaction of (1) and (2) indicate that BIPO and BIP are flexible enough to stabilize both CuII and CuI forms of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号