首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a polarization‐induced electrospray ionization mass spectrometry (ESI‐MS) was developed. A micro‐sized sample droplet was deposited on a naturally available dielectric substrate such as a fruit or a stone, and then placed close to (~2 mm) the orifice of a mass spectrometer applied with a high voltage. Taylor cone was observed from the sample droplet, and a spray emitted from the cone apex was generated. The analyte ion signals derived from the droplet were obtained by the mass spectrometer. The ionization process is similar to that in ESI although no direct electric contact was applied on the sample site. The sample droplet polarized by the high electric field provided by the mass spectrometer initiated the ionization process. The dielectric sample loading substrate facilitated further the polarization process, resulting in the formation of Taylor cone. The mass spectral profiles obtained via this approach resembled those obtained using ESI‐MS. Multiply charged ions dominated the mass spectra of peptides and proteins, whereas singly charged ions dominated the mass spectra of small molecules such as amino acids and small organic molecules. In addition to liquid samples, this approach can be used for the analysis of solid and viscous samples. A small droplet containing suitable solvent (5–10 µl) was directly deposited on the surface of the solid (or viscous) sample, placed close the orifice of mass spectrometer applied with a high voltage. Taylor cone derived from the droplet was immediately formed followed by electrospray processes to generate gas‐phase ions for MS analysis. Analyte ions derived from the main ingredients of pharmaceutical tablets and viscous ointment can be extracted into the solvent droplet in situ and observed using a mass spectrometer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Simplification and evaluation of a gold-deposited SPR optical fiber sensor.   总被引:1,自引:0,他引:1  
The structure of the sensing element of a gold-deposited optical fiber sensor was simplified and quantitative analyses of various alcohols with the sensor showed improvement of the performance. The sensor uses surface plasmon resonance (SPR) at the interface of a sample solution and a thin (10 - 70 nm) gold film deposited on half of the exposed core of the optical fiber. The sensor with a film thickness of 45 nm can detect a small change of 5.6 x 10(-5) refractive index (RI) units in the refractivity. The response time is less than 0.5 min and the relative standard deviation for measurements is less than or equal to 1%. A straight line with a correlation coefficient of 0.9995 was obtained below 10%, v/v in the calibration curve for methanol solutions of benzyl alcohol. The minimum of the response curve due to the maximum excitation of SPR in the refractivity range from 1.33 to 1.44 RI units shifts to a lower refractivity as the film becomes thicker. The response curves of the sensors were calculated from SPR theoretical equations while considering of the distribution in the thickness of the deposited gold films. The improvement in the performance of the sensor is discussed.  相似文献   

3.
This study examines the feasibility of generating electrospray directly from the tip of two optical fibers bound together with Teflon tape. This approach does not require a capillary and syringe pump. The electrospray source is simply constructed by coiling the two optical fibers with a platinum (Pt) wire. The optical fibers extend beyond the Pt coil for approximately 1 cm. The sample solution is predeposited on the Pt coil by a micropipette. As the high voltage required for electrospray is applied to the coil, the sample solution moves along the grooves between the two optical fibers. A stable electrospray is subsequently generated at the tip of the fibers. The mass spectra of insulin, lysozyme, and ubiquitin are exactly the same as those obtained by conventional electrospray using a capillary and syringe pump. Rapid determination of the active ingredient in a tablet by this technique is demonstrated.  相似文献   

4.
Gold-deposited optical fiber sensors with film thicknesses from 30 to 60 nm were prepared, and the responses to a wide range of a refractivity (1.33-1.54 refractive index (RI) units) were investigated both experimentally and theoretically. The response curve of the sensor has two minima in the refractivity range from 1.33 to 1.44 and at 1.462 RI units. The former minimum is due to surface plasmon resonance (SPR) in the thin gold film, and shifts to a lower refractivity as the film becomes thicker. The response curves of the sensors with film thicknesses of 45 and 60 nm agreed well with those calculated from SPR theoretical equations. Morphology observations of the surfaces of deposited gold films on glass by atomic force microscopy (AFM) and a variation in resistance of the films with various thicknesses show the structure of the gold films. We concluded that the thin deposited gold films have many defects, and that the core of the gold-deposited optical fiber leaks light through the defects to the sample solution with the same refractivity (1.462 RI units) as that of the core.  相似文献   

5.
Probe electrospray ionization (PESI) has recently been developed, in which the electrospray was generated from a solid needle instead of by using a capillary. In this paper, the characteristics of probe electrospray ionization were studied based on the measurement of spray current, optical microscopy, and PESI mass spectrometry. In the experiment, the solid needle was moved up and down a vertical axis, and a small amount of sample was repeatedly loaded to the needle when the tip of the needle touched the surface of the liquid sample at the lowest position. After the application of high voltage, a liquid droplet was formed on the tip of the solid needle probe, with its size was determined by the size of the needle tip. The liquid flow rate to the tip, as indicated by the spray current, depends on the voltage applied to the needle as well as the loaded liquid amount. Stable electrospray can be maintained until the total consumption of liquid sample. The kilohertz current pulsation takes place in the case of overloading the sample to the needle. The influences of the applied voltage and the liquid flow rate on the PESI mass spectra were also examined.  相似文献   

6.
Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet–droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet–droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet–droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet–droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet–droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.  相似文献   

7.
Manipulation for simplifying or increasing the observed charge state distributions of proteins can be highly desirable in mass spectrometry experiments. In the present work, we implemented a vapor introduction technique to an Agilent Jet Stream ESI (Agilent Technologies, Santa Clara, CA, USA) source. An apparatus was designed to allow for the enrichment of the nitrogen sheath gas with basic vapors. An optical setup, using laser-induced fluorescence and a pH-chromic dye, permits the pH profiling of the droplets as they evaporate in the electrospray plume. Mechanisms of pH droplet modification and its effect on the protein charging phenomenon are elucidated. An important finding is that the enrichment with basic vapors of the nitrogen sheath gas, which surrounds the nebulizer spray, leads to an increase in the spray current. This is attributed to an increase in the electrical conductivity of water-amine enriched solvent at the tip exit. Here, the increased current results in a generation of additional electrolytically produced OH(-) ions and a corresponding increase in the pH at the tip exit. Along the electrospray plume, the pH of the droplets increases due to both droplet evaporation and exposure to basic vapors from the seeded sheath gas. The pH evolution in the ESI plume obtained using pure and basic seeded sheath gas was correlated with the evolution of the charge state distribution observed in mass spectra of proteins, in the negative ion mode. Taking advantage of the Agilent Jet Stream source geometry, similar protein charge state distributions and ion intensities obtained with basic initial solutions, can be obtained using native solution conditions by seeding the heated sheath gas with basic vapors.  相似文献   

8.
We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1–2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.  相似文献   

9.
Continuous flow infrared matrix‐assisted laser desorption electrospray ionization (CF IR MALDESI) mass spectrometry was demonstrated for the on‐line analysis of liquid samples. Samples in aqueous solution were flowed through a 50 µm i.d. fused‐silica capillary at a flow rate of 1–6 µL/min. As analyte aqueous solution flowed through the capillary, a liquid sample bead formed at the capillary tip. A pulsed infrared optical parametric oscillator (OPO) laser with wavelength of 2.94 µm and a 20 Hz repetition rate was focused onto the capillary tip for sample desorption and ablation. The plume of ejected sample was entrained in an electrospray to form ions by MALDESI. The resulting ions were sampled into an ion trap mass spectrometer for analysis. Using CF IR MALDESI, several chemical and biochemical reactions were monitored on‐line: the chelation of 1,10‐phenanthroline with iron(II), insulin denaturation with 1,4‐dithiothreitol, and tryptic digestion of cytochrome c. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Electrospray ionization (ESI) is commonly used in macromolecular mass spectrometry, yet the dynamics of macromolecules in ESI droplets are not well understood. In this study, a Monte Carlo based model was developed, which can predict the efficiency of electrospray ionization for macromolecules, i.e., the number of macromolecular ions produced per macromolecules electrosprayed. The model takes into account ESI droplet evaporation, macromolecular diffusion within the droplet, droplet fissions, and the statistical nature of the ESI process. Two idealized representations of macromolecular analytes were developed, describing cluster prone, droplet surface inactive macromolecules and droplet surface active macromolecules, respectively. It was found that surface active macromolecules are preferentially ionized over surface inactive cluster prone macromolecules when the initial droplet size is large and the analyte concentration in solution is high. Simulations showed that ESI efficiency decreases with increasing initial droplet size and analyte molecular weight, and is influenced by analyte surface activity, the properties of the solvent, and the variance of the droplet size distribution. Model predictions are qualitatively supported by experimental measurements of macromolecular electrospray ionization made previously. Overall, this study demonstrates the potential capabilities of Monte Carlo based ESI models. Future developments in such models will allow for more accurate predictions of macromolecular ESI intensity.  相似文献   

11.
We present a method of photochemical modification of an optical fiber tip with a silver nanoparticle film. The deposited silver nanoparticle film displays alternating light and dark circles, which are similar to a radial diffraction pattern. The modified optical fiber is examined as a chemical sensor for in situ detection. The modified fibers show excellent SERS activity, a low limit of detection (LOD), and good reproducibility. The maximum SERS activity of the sensor was achieved within 5.0 min of deposition. Thus, the method is also quite rapid.  相似文献   

12.
The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.  相似文献   

13.
On-demand electrospray ionization from different liquid channels in the same emitter was realized using filamented capillary and gas phase charge supply. The solution sub-channel was formed when back-filling solution to the emitter tip by capillary action along the filament. Gas phase charge carriers were used to trigger electrospray ionization from the solution meniscus at the tip. The meniscus at the tip opening may be fully filled or partially empty to generate electrospray ionization in main-channel regime and sub-channel regime, respectively. For emitters with 4 μm tip opening, the two nested electrospray (nested-ESI) channels accommodated ESI flow rates ranging from 50 pL min−1 to 150 nL min−1. The platform enabled on-demand regime alternations within one sample run, in which the sub-channel regime generated smaller charged droplets. Ionization efficiencies for saccharides, glycopeptide, and proteins were enhanced in the sub-channel regime. Non-specific salt adducts were reduced and identified by regime alternation. Surprisingly, the sub-channel regime produced more uniform responses for a peptide mixture whose relative ionization efficiencies were insensitive to ESI conditions in previous picoelectrospray study. The nested channels also allowed effective washing of emitter tip for multiple sampling and analysis operations.

Nested electrospray ionization alternates on-demand between microscale main-channel and nanscale sub-channels.  相似文献   

14.
The electrospray droplets that are sampled through an orifice into the vacuum chamber are accelerated by 10 kV and impact on the stainless steel substrate. The mass and the kinetic energy of electrospray droplets are roughly estimated to be a few 10(6) u and approximately 10(6) eV, respectively. The molecular ion M(+.) and the protonated molecule [M+H](+) are observed as secondary ions for chrysene and coronene deposited on the metal substrate (no matrix used). The ionization may take place in the shock wave generated by the high-momentum coherent collision between the droplet projectile and the solid sample. Cluster ions of H(+)(H(2)O)(n) and CF(3)COO(-)(H(2)O)(n), with n up to approximately 150, were observed as secondary ions formed by the electrospray droplet impact ionization (EDI) for 10(-2) M trifluoroacetic acid (TFA) aqueous solution. This indicates that the charged droplets that collide with the metal substrate with the kinetic energy of approximately 10(6) eV do not vaporize completely but are disintegrated into many tiny microdroplets. The ion signal intensity anomalies (i.e. magic numbers) were observed for the cluster ions of H(3)O(+)(H(2)O)(n) and CF(3)COO(-)(H(2)O)(n) for 10(-2) M TFA aqueous solution and of Cs(+)(H(2)O)(n), I(-)(H(2)O)(n), Cs(+)(CsI)(n), and I(-)(CsI)(n) for 10(-2) M CsI aqueous solution.  相似文献   

15.
An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI‐MS). The PPy film acted as a surface‐attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy‐coated electrode. A semi‐quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore the lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports notable observations regarding the ion charge states of thermally stable cytochrome c, generated using an alternating current (AC) electrospray ionization (ESI) device. An AC ESI sprayer entrains low-mobility ions to accumulate at the meniscus cone tip prior to the ejection of detached aerosols to produce analyte ions. Therefore, as the solvent acidity varies, protein ions entrained in the AC cone tip are found to change conformation less significantly compared with those in the direct current (DC) cone. We acquired the AC ESI mass spectra of cytochrome c at pH range from 2 to 4. Unlike the DC ESI mass spectra showing clear conformation changes due to denaturing, the AC spectra indicated that only partial denaturing occurs even at extremely acidic pH 2. More native cytochrome c in lower charge states therefore remained. Moreover, with a solvent mixture of aqueous buffer and acetonitrile (70:30), partially denatured cytochrome c was still preserved at pH 2 by using AC ESI. Completely denatured proteins are observed at pH 2 by using DC ESI.  相似文献   

17.
The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3–5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.  相似文献   

18.
A new ionization method, electrospray droplet impact ionization (EDI), has been developed for matrix-free secondary-ion mass spectrometry (SIMS). The charged droplets formed by electrospraying 1 M acetic acid aqueous solution are sampled through an orifice with a diameter of 400 microm into the first vacuum chamber, transported into a quadrupole ion guide, and accelerated by 10 kV after exiting the ion guide. The droplets impact on a dry solid sample (no matrix used) deposited on a stainless steel substrate. The secondary ions formed by the impact are transported to a second quadrupole ion guide and mass-analyzed by an orthogonal time-of-flight mass spectrometer (TOF-MS). Ten pmol of gramicidin S could be detected with the presence of as much as 10 nmol of NaCl. The ion signal for arginine disappeared with decrease in the substrate temperature below 150 K owing to the formation of ice film over the sample surface. While 10 fmol of gramicidin S could be detected for 30 min, the ionization/desorption efficiency for EDI becomes smaller with an increase in the molecular weight (MW) of a biological sample. The largest protein samples detected to date are cytochrome c and lysozyme. The high sensitivity for EDI is due to the fact that samples only a few monolayers thick are subject to desorption/ionization by EDI, with little fragmentation. A coherent phonon excitation may be the main mechanism for the desorption/ionization of the solid sample.  相似文献   

19.
Self-cleaning of surfaces becomes challenging for energy harvesting devices because of the requirements of high optical transmittance of device surfaces. Surface texturing towards hydrophobizing can improve the self-cleaning ability of surfaces, yet lowers the optical transmittance. Introducing optical matching fluid, such as silicon oil, over the hydrophobized surface improves the optical transmittance. However, self-cleaning ability, such as dust mitigation, of the oil-impregnated hydrophobic surfaces needs to be investigated. Hence, solution crystallization of the polycarbonate surface towards creating hydrophobic texture is considered and silicon oil impregnation of the crystallized surface is explored for improved optical transmittance and self-cleaning ability. The condition for silicon oil spreading over the solution treated surface is assessed and silicon oil and water infusions on the dust particles are evaluated. The movement of the water droplet over the silicon oil-impregnated sample is examined utilizing the high-speed facility and the tracker program. The effect of oil film thickness and the tilting angle of the surface on the sliding droplet velocity is estimated for two droplet volumes. The mechanism for the dust particle mitigation from the oil film surface by the sliding water droplet is analyzed. The findings reveal that silicon oil impregnation of the crystallized sample surface improves the optical transmittance significantly. The sliding velocity of the water droplet over the thick film (~700 µm) remains higher than that of the small thickness oil film (~50 µm), which is attributed to the large interfacial resistance created between the moving droplet and the oil on the crystallized surface. The environmental dust particles can be mitigated from the oil film surface by the sliding water droplet. The droplet fluid infusion over the dust particle enables to reorient the particle inside the droplet fluid. As the dust particle settles at the trailing edge of the droplet, the sliding velocity decays on the oil-impregnated sample.  相似文献   

20.
Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号