首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the determination of removal cross sections for different materials as paraffin, lead, graphite, concrete, and wood. The experimentally determined values of removal cross sections concerning these materials are respectively: 0.072±0.001, 0.089±0.003, 0.067±0.006, 0.071±0.003 and 0.0360±0.0005 cm–1.  相似文献   

2.
3.
4.
By developing the semi-empirical formula recently obtained for total cross sections of electron scattering from diatomic molecules in the intermediate- and highenergy range, we calculate the total cross sections for electron scattering from molecules (NH3 and H2O) over an incident energy range of 10–1000 eV. The total cross sections have also been calculated by using the complex optical potential and the additivity rule. Compared with other available experimental and calculating data, excellent agreements have been achieved. The developed semi-empirical formula reflects that total cross sections for electron scattering from NH3 and H2O in the intermediate- and high-energy range quantitatively depend on the bond length.  相似文献   

5.
A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01eV to 1MeV for atoms of Z=1–100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data.First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by “adjusted” Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons.The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of −10−8.  相似文献   

6.
We report results of measurements and calculations of absolute cross sections for electron scattering from furan molecules (C(4)H(4)O). The experimental absolute differential cross sections (DCSs) for elastic electron scattering were obtained for the incident energies from 50 eV to 300 eV and for scattering angles from 20[ordinal indicator, masculine] to 110[ordinal indicator, masculine], by using a crossed electron-target beam setup and the relative flow technique for calibration to the absolute scale. The calculations of the electron interaction cross sections are based on a corrected form of the independent-atom method, known as the screening corrected additivity rule (SCAR) procedure and using an improved quasifree absorption model. The latter calculations also account for rotational excitations in the approximation of a free electric dipole and were used to obtain elastic DCSs as well as total and integral elastic cross sections which are tabulated in the energy range from 10 to 10 000 eV. All SCAR calculated cross sections agree very well with both the present and previously published experimental results. Additionally, calculations based on the first Born approximation were performed to calculate both elastic and vibrationally inelastic DCSs for all the modes of furane, in the energy range from 50 eV to 300 eV. The ratios of the summed vibrational to elastic DCSs are presented and discussed. Finally, the present results for furan are compared with previously published elastic DCSs for the tetrahydrofuran molecule and discussed.  相似文献   

7.
Electron inelastic-scattering cross-section data for use as input in electron track-structure calculations in liquid water are re-examined and improved. The dielectric-response function used in such cross-sections is estimated on the basis of optical data and other experimental and theoretical information. The mean excitation energy for stopping power is obtained to be 81.8 eV, which is close to the recent experimental value, 79.75±0.5 eV, of Bichsel and Hiraoka. Inelastic-scattering cross sections are evaluated within the first Born approximation. Electron-exchange effects and semi-empirical corrections to account for non-Born effects at low energies are also incorporated.  相似文献   

8.
Elastic differential electron scattering cross sections of oriented methyl iodide are calculated using the independent atom model. Results are presented for two specific orientations of the ICH3 molecule for the purpose of comparison with the fictitious molecule IC, similarly oriented, at electron energies of 600 eV and 40 keV. Cross sections are also calculated for IC with a large angular momentum. In a comparison of the results for different orientations of the angular momentum vector, including random orientation, large differences between the cross sections are evident. This sensitivity to the plane of rotation of the molecule suggests the possibility of determining the degree of alignment of the angular momenta of a beam of such molecules by electron diffraction.  相似文献   

9.
10.
11.
The authors have performed neutron Compton scattering measurements on ammonium hexachloropalladate (NH(4))(2)PdCl(6) and ammonium hexachlorotellurate (NH(4))(2)TeCl(6). Both substances belong to the family of ammonium metallates. The aim of the experiment was to investigate the possible role of electronic environment of a proton on the anomaly of the neutron scattering intensity. The quantity of interest that was subject to experimental test was the reduction factor of the neutron scattering intensities. In both samples, the reduction factor was found to be smaller than unity, thus indicating the anomalous neutron Compton scattering from protons. Interestingly, the anomaly decreases with decreasing scattering angle and disappears at the lowest scattering angle (longest scattering time). The dependence of the amount of the anomaly on the scattering angle (scattering time) is the same in both substances (within experimental error). Also, the measured widths of proton momentum distributions are equal in both metallates. This is consistent with the fact that the attosecond proton dynamics of ammonium cations is fairly well decoupled from the dynamics of the sublattice of the octahedral anions PdCl(6) (2-) and TeCl(6) (2-), respectively. The hypothesis is put forward that proton-electron decoherence processes are responsible for the considered effect. Decoherence processes may have to do rather with the direct electronic environment of ammonium protons and not with the electronic structure of the metal-chlorine bond.  相似文献   

12.
The (n,p) and (n,2n) reaction cross sections on natural Ti and Mo targets have been measured forE n =14.73±0.05 MeV neutrons using the activation technique. The induced gamma-ray activities of the irradiated samples and their monitor foils were measured by using an HPGe detector. The cross sections were compared with previous results. The experimental uncertainties are between 3% and 8% in most cases.  相似文献   

13.
14.
Spherical complex optical potential (SCOP) approach has been used to compute the differential, total (elastic + inelastic) and momentum transfer cross sections for electrons scattering from the bound and free germanium and lead atoms in the energy range from 100–5000 eV. We find that the present calculated differential scattering cross sections (DCS) exhibit all important features (such as forward peaking, dip at middle angles and enhanced backward scattering) observed in other theoretical calculations and experimental measurements. The effect of absorption potential is generally to reduce the elastic cross section.  相似文献   

15.
A sudden approximation recently derived by Cross using a semiclassical treatment of the orbital motion is recast into a form which permits factorization of differential and integral degeneracy averaged cross sections, opacities as a function of final angular momentum quantum number, the scattering amplitude, and the phenomenological cross section which describes spectral line broadening. Calculations are done using an average of initial and final orbital angular momentum quantum numbers for the partial wave parameter for ArN2, ArTIF, H+H2 and Li+H2. The results indicate that the method is a good approximation for integral cross sections and opacities when the energy sudden approximation is valid and when the coupling of the orbital motion is important.  相似文献   

16.
Total dissociative electron attachment cross sections are presented for the amino acids, glycine, alanine, proline, phenylalanine, and tryptophan, at energies below the first ionization energy. Cross section magnitudes were determined by observation of positive ion production and normalization to ionization cross sections calculated using the binary-encounter-Bethe method. The prominent 1.2 eV feature in the cross sections of the amino acids and the closely related HCOOH molecule is widely attributed to the attachment into the -COOH pi* orbital. The authors discuss evidence that direct attachment to the lowest sigma* orbital may instead be responsible. A close correlation between the energies of the core-excited anion states of glycine, alanine, and proline and the ionization energies of the neutral molecules is found. A prominent feature in the total dissociative electron attachment cross section of these compounds is absent in previous studies using mass analysis, suggesting that the missing fragment is energetic H-.  相似文献   

17.
We report total scattering cross sections for C2H4 molecule by electron impact. Calculations are performed by using two different quantum mechanical methods and they cover the energy range from 1 to 2000 eV. For low energy calculations up to 15 eV, UK molecular R‐matrix code through QUANTEMOL‐N software is used, while intermediate to high energy (15–2000 eV) calculations were carried out by applying spherical complex optical potential formalism. Comparison is made with earlier measurements and theoretical data wherever available. A shape resonance is detected around 2 eV due to the 2B2g symmetry of an electronic state that corresponds to the temporary negative ion formation of ethylene. The differential cross sections are also calculated for the energy range from 1 to15 eV for the scattering angles between 0º and 180º. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A time-of-flight (TOF) electron spectrometer has been used to measure absolute total cross sections (TCS) scattered from helium and argon over the energy range from 1 to 50 eV. The TOF spectrometer and experimental procedure are described briefly, and experimental results are presented together with associated errors. The results are found to be in good agreement with other experimental and theoretical data.  相似文献   

19.
Argon and iodine recoil ions were produced by a 2 GeV U75+ beam and total one electron capture cross sections are measured for 198 eV/q Ar q+ (4≦q15) and I q+ (5≦q27 on He andH 2. The cross section can be approximately reproduced by 1/2 πR 2 according to the classical barrier model. Theq-dependences exhibit significant fluctuations even for high charge states.  相似文献   

20.
The angle and energy dependence of differential cross sections σ(E, θ) that exhibit diffraction oscillations is analyzed by a Regge representation. It is shown that: (1) the Regge poles can be estimated directly from the measured σ(E, θ); (2) a fixed-energy Regge pole calculation can reproduce the E-dependence of σ(E, θ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号