首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microencapsulation techniques represent a critical step in realizing highly controlled transport of functional materials in multiphase systems. The first demonstration of microcapsules prepared from minimally grafted silk ionomers (silk fibroin modified with cationic/anionic charge groups) are presented here. These tailored biomacromolecules have shown significantly increased biocompatibility over traditional polyelectrolytes and heavily grafted silk ionomers, but the low grafting density had previously limited attempts to fabricate stable microcapsules. In addition, the first microcapsules from polyethylene‐glycol‐grafted silk ionomers are fabricated and the corresponding impact on microcapsule behavior is demonstrated. The materials are shown to exhibit pH‐responsive properties, with the microcapsules demonstrating an approx. tenfold decrease in stiffness and an approx. threefold change in diffusion coefficient when moving from acidic to basic buffer. Finally, the effect of assembly conditions of the microcapsules are shown to play a large role in determining final properties, with microcapsules prepared in acidic buffers showing lower roughness, stiffness, and an inversion in transport behavior (i.e., permeability decreases at higher pH).  相似文献   

2.
Summary: We investigated microcapsules composed of the weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) assembled on calcium carbonate cores. These capsules are stable in the pH range from 2.5 to 11.5, undergoing reversible swelling in the pH interval from 2.7 to 2.6. Capsule swelling occurs at a protonation degree above 90%. The pH‐dependent size variation of PAH/PMA capsules is blocked after crosslinking of the polyelectrolyte layers.

Schematic of the swelling and de‐swelling of the capsules with changing pH.  相似文献   


3.
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers.  相似文献   

4.
Multicompartmental responsive microstructures with the capability for the pre‐programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual‐responsive blocks (temperature for poly(N‐isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2‐vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water‐soluble hydrophilic macromolecules. For these dual‐loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out‐of‐shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out‐of‐core release (pH). Reversing stimulus order completely alters the release process.  相似文献   

5.
The mechanical properties of hydrogen-bonded layer-by-layer (LbL) microcapsule shells constructed from tannic acid (TA) and poly(vinylpyrrolidone) (PVPON) components have been studied in both the dry and swollen states. In the dry state, the value of the elastic modulus was measured to be within 0.6-0.7 GPa, which is lower than the typical elastic modulus for electrostatically assembled LbL shells. Threefold swelling of the LbL shells in water results in a significant reduction of the elastic modulus to values well below 1 MPa, which is typical value seen for highly compliant gel materials. The increase of the molecular weight of the PVPON component from 55 to 1300 kDa promotes chain entanglements and causes a stiffening of the LbL shells with a more than 2-fold increase in elastic modulus value. Moreover, adding a polyethylenimine prime layer to the LbL shell affects the growth of hydrogen-bonded multilayers which consequently results in dramatically stiffer, thicker, and rougher LbL shells with the elastic modulus increasing by more than an order of magnitude, up to 4.3 MPa. An alternation of the elastic properties of very compliant hydrogen-bonded shells by variation of molecular weight is a characteristic feature of weakly bonded LbL shells. Such an ability to alter the elastic modulus in a wide range is critically important for the design of highly compliant microcapsules with tunable mechanical stability, loading ability, and permeability.  相似文献   

6.
 Solid microspheres consisting of thermal heterocomplex molecules made from heating a mixture of aspartic acid and proline were transformed into husk-like microcapsules in their aqueous suspensions when pH value increased. The thickness of the outer shell of the husk-like microcapsule decreased as pH increased. Formation of the husk-like microcapsules is discussed to be due to both diffusion of the constituent molecules from the inside of the microspheres and conformational changes of those molecules in the process. Received: 16 October 1996 Accepted: 16 January 1997  相似文献   

7.
By using a combination of atomic force and confocal microscopy, we explore the effect of pH and salt on the stiffness of polyelectrolyte microcapsules with shells composed of strong polyanions and weak polycations. The stiffness of the capsules was found to be largest in water. It decreases slightly with added salt and gets much smaller both in acidic and in alkaline solutions. The moderate softening of the capsules in electrolyte solutions indicates that even high salt concentration does not significantly dissociate polyelectrolytes in the multilayer. The dramatic softening of the capsules at high pH probably reflects a decrease in the charge density of a polycation, which leads to a reduction in the number of ionic cross-links. In contrast, low stiffness of the capsules in acidic solutions seems to be connected mostly with the enhanced permeability of the multilayer shell.  相似文献   

8.
采用同步互穿网络方法制备丝胶蛋白(SS)/聚甲基丙烯酸(PMAA)为组分的互穿网络(IPN)水凝胶. 研究了互穿网络水凝胶对介质pH的刺激响应性能. 结果表明, IPN水凝胶具有强烈的pH刺激响应性能. 在pH=9.2的缓冲溶液中, -COOH解离成 -COO-, 渗透压与网络之间的静电排斥作用导致IPN的溶胀度增大; 当pH减小时, 溶胀度随之减小. IPN水凝胶具有快速退溶胀速率及可逆溶胀-收缩性能.  相似文献   

9.
Natural, biosynthesized poly(gamma-glutamic acid) (γ-PGA) was crosslinked using dihalogenoalkanes yielding hydrogels with various features. Crosslinking reactions of the polymer and swelling of the hydrogels were studied. Various reaction parameters, like temperature and catalyst content, were adjusted to give highest yields in the network production. Swelling of the hydrogels showed dramatic changes when varying experimental conditions such as the molecular weight of γ-PGA, the nature and concentration of the crosslinker, and the solution used for the swelling (ionic strength, pH). © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Bioencapsulation allows the protection of biologically active substances or cells from the biological environment. As such, bioencapsulation is often used for the delivery of drugs, growth factors and therapeutically useful cells. Depending on the site of implantation, the biocapsules are subjected to different pH environments, which will affect the degradation properties, mechanical properties and swelling behaviour of the biocapsules. As such, the encapsulation material plays an important role in the long term stability and performance of the biocapsules in vivo. In this study, five types of encapsulation materials were investigated: (i) alginate (A), (ii) alginate-chitosan (AC), (iii) alginate-chitosan-alginate (ACA), (iv) alginate-chitosan-polyethylene glycol (PEG) (ACP) and (v) alginate-chitosan-polyethylene glycol (PEG)-alginate (ACPA). Degradation studies were carried out by immersing the microcapsules in solutions of different pH values to investigate the role of the material as well as the number of encapsulation layers in maintaining the stability of the microcapsules in the different pH environments. Compression testing indicated that even with the presence of PEG on the surface membrane, there was not much difference in mechanical strength between ACA and ACPA microcapsules. However, the use of PEG did affect the weight change of the ACPA microcapsules when immersed in water and three different pH solutions. For the swelling test, the ACPA microcapsules showed a lower water uptake than ACA microcapsules. For degradation, the presence of PEG led to a lower increase in weight change compared to non-PEG chitosan microcapsules. Hence, the study revealed that PEG influenced the integrity of the surface membrane and not the mechanical strength of the microcapsules. With the inclusion of PEG, the interpenetrating network on the surface membrane would be further reinforced. As such, the addition of PEG to the alginate-chitosan microcapsules led to protection against an acidic environment, whilst the number of coating layers only influences the swelling properties and not the degradation and Young’s modulus of the microcapsules.  相似文献   

11.
Novel monodisperse cationic pH-responsive microcapsules are successfully prepared using oil-in-water-in-oil double emulsions as templates by a microfluidic technique in this study. With the use of a double photo-initiation system and the adjustment of pH value of the monomer solution, cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDM) microcapsules with good sphericity and monodispersity can be effectively fabricated. The obtained microcapsule membranes swell at low pH due to the protonation of N(CH(3))(2) groups in the cross-linked PDM networks. The effects of various preparation parameters, such as pH of the aqueous monomer fluid, concentration of cross-linker, concentration of monomer N,N-dimethylaminoethyl methacrylate (DM) and addition of copolymeric monomer acrylamide (AAm), on the pH-responsive swelling characteristics of PDM microcapsules are systematically studied. The results show that, when the PDM microcapsules are prepared at high pH and with low cross-linking density and low DM monomer concentration, they exhibit high pH-responsive swelling ratios. The addition of AAm in the preparation decreases the swelling ratios of PDM microcapsules. The external temperature has hardly any influence on the swelling ratios of PDM microcapsules when the external pH is less than 7.4. The prepared PDM microcapsules with both biocompatibility and cationic pH-responsive properties are of great potential as drug delivery carriers for tumor therapy. Moreover, the fabrication methodology and results in this study provide valuable guidance for preparation of core-shell microcapsules via free radical polymerization based on synergistic effects of interfacial initiation and initiation in a confined space.  相似文献   

12.
Summary: Reversible pH‐induced swelling of (PAH/PSS) polyelectrolyte microcapsules is accompanied by increased porosity, making them permeable to poly(acrylic acid) (PAA) at pH values higher than 11.2. This pH‐switchable permeability was used to encapsulate the polyanion in alkaline conditions. Relationship between starting PAA concentration in solution and amount finally being encapsulated has been established and can be used further as calibration curve. A desired amount of encapsulated polymer in the picogram range per capsule can be achieved. The loaded capsules were then used as microreactors by forming a complex between the PAA and Ca2+ ions.

General scheme for pH‐induced encapsulation of (PAA) in alkali condition by switching their permeability.  相似文献   


13.
Hollow microcapsules composed of the weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are templated on silicon oxide particles using the layer-by-layer adsorption. The colloidal template is removed with a buffer system of hydrofluoric acid and ammonium fluoride. With this buffer system, the template can be dissolved in mild pH conditions, where the polymeric layers are still stable. The morphology and the thickness of the resulting capsules are investigated with atomic force microscopy. The resulting hollow capsules show pH-dependent properties. The shells are stable over a broad pH range and swell and immediately dissolve for pH values below 2.3 and above 11. If the molecular weight of the poly(methacrylic acid) is increased, the enhanced entanglement of the polymers results in a reversible swelling of the capsules at low and at high pH. The swelling degree is probed with confocal laser scanning microscopy. In addition to the pH-dependent size variations, the different ionization degree of poly(methacrylic acid) as a function of pH is used for the selective binding of calcium ions.  相似文献   

14.
Silk fibroin exhibits excellent mechanical properties, good biocompatibility, and biodegradability combined with benign processing conditions, attracting considerable research interest for the application as biomedical materials. Among the diverse forms of sponges, hydrogels, films, and mats manufactured from silk fibroin, films are especially appealing due to the high water and oxygen permeability, good cell attachment, and low immunogenicity. Fabrication of silk fibroin films with novel properties has been successfully developed simply by incorporating various functional components into it. In the present study, the properties of thermal insulation and temperature monitoring for the silk fibroin film are demonstrated for the first time through the incorporation of thermochromic microcapsules within it. Moreover, the silk fibroin film is also endowed with improved mechanical properties in terms of tension strength and elongation at break because of the reinforcing effect of thermochromic microcapsules. The silk fibroin film fabricated with novel features in this study can be a good candidate for the application of wound dressings, tissue engineering scaffolds, and bio‐related devices in the future. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1846–1852  相似文献   

15.
A simple route is presented to prepare core-shell Eudragit microcapsules through a solvent extraction method with the use of microsieve emulsification. Droplets from a solution of Eudragit FS 30D (a commercial copolymer of poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid) 7:3:1) and hexadecane in dichloromethane are dispersed into water, using a micro-engineered membrane with well-defined pores, in a cross-flow setting. The dichloromethane is extracted from the droplets, which induces demixing in the droplets, leading to a hexadecane-rich core, and an Eudragit-rich shell. The obtained microcapsules have a narrow size distribution due to the microsieve emulsification process. The capsules have a porous shell as shown by SEM and AFM measurements. Their porosity and pore size is dependent on the ratios of Eudragit and hexadecane in the dispersed phase. At pH 7.1 and above Eudragit (FS 30D) dissolves in water; this pH change is used to release the contents of the microcapsule.  相似文献   

16.
We introduce a facile and versatile approach for the formation of ball-like polymer–inorganic patchy microcapsules with a tunable shell by combining sol–gel chemistry of silica precursor and phase separation between the polymer and the precursor. Firstly, chloroform-in-water emulsion droplets containing poly(methyl methacrylate) (PMMA), silica precursor [tetraethyl orthosilicate (TEOS)] and co-surfactant sodium dioctyl sulfosuccinate (Aerosol OT or AOT) were prepared by shaking the mixture by hand. Due to the added AOT, water molecules diffuse into the chloroform droplets, and the tiny water droplets would coalesce gradually, triggering the formation of double emulsion droplets. Upon further solvent evaporation, the concentration of the polymer and the silica precursor in the oil shell of the double emulsions increases, leading to the phase separation between the polymer and the precursors (and partially formed silica through the hydrolysis and condensation of TEOS). Because of the confined geometry of the oil shell in the double emulsions, polymeric disc-like structures, stabilized by AOT, were dispersed in the silica precursors. Meanwhile, the silica precursor hydrolyzed and condensed when brought in contact with the aqueous solution, ultimately leading to the formation of a mineralized shell around the polymer domains and the hybrid patchy microcapsules. Effect of synthesis conditions, such as the amount of TEOS, AOT, and PMMA used, the pH value, and solvent evaporation rate on interfacial behavior of the solvent/water; and the morphology of the patchy microcapsules were investigated. Patchy microcapsules with tunable patch size and shape can be generated through tailoring the experimental parameters. Our study indicates that the hybrid patchy microcapsules can be formed by taking advantage of the sol–gel chemistry and the phase separation process, and the underlying generality of the synthesis procedure allows for a variety of applications, including drug storage, coatings, delivery, catalysis, and smart building blocks in self-assembling systems.  相似文献   

17.
A fabrication method for hollow melamine-formaldehyde microcapsules from microbubble templates is presented. This method is based on the direct encapsulation of microbubbles, and thus does not require a liquid- or solid-core decomposition process. This study determined the conditions for controlling the surface morphology, shell thickness, and diameter distribution of hollow microcapsules. Results showed that the surface morphology of these hollow microcapsules depended on the reaction time, glycine concentration (pH of aqueous continuous phase) and pre-polymer concentration. The capsule shell thickness could be controlled by adjusting the concentration of aniline that had adsorbed on the microbubble surface and reacted with pre-polymer. The capsule diameter depended on the dissolution rate of gases, and the diameter of the hollow microcapsules fabricated from air microbubble templates ranged from 5 to 200 microm.  相似文献   

18.
We are presenting a new method to study the swelling of gels by following the apparent weight increase during confined swelling. This method, compared to other procedures, is characterized by its simplicity and versatility to study the influence of the experimental conditions such as composition of the swelling agent and temperature. Examples are given for poly(acrylic acid) and poly(N-isopropyl acrylamide) hydrogels and the influence of ethanol content, pH, and temperature in the water pool.  相似文献   

19.
pH值对正十八烷微胶囊合成与性能的影响   总被引:6,自引:0,他引:6  
pH值对正十八烷微胶囊合成与性能的影响;微胶囊;相变材料;正十八烷  相似文献   

20.
Incubation of CaCO3 microparticles in chitosan (CS) solution at pH 5.2 and following with ethylenediaminetetraacetic acid disodium salt (EDTA) treatment resulted in CS single‐component microcapsules with an ultra‐thick wall structure. Repeating the incubation caused stepwise increase of wall thickness and finally resulted in CS microcapsules with a layered structure. This unique method is mediated by precipitation of CS on the CaCO3 particles as a result of pH increase caused by the partial dissolution of CaCO3. The obtained CS capsules are stable at neutral pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号