首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王强华 《物理》2004,33(8):547-550
作者最近的一项理论工作对高温超导体作为一种掺杂Mott绝缘体进行了新的探索 ,得到一个长波低能极限的有效理论 ,强调了自旋反铁磁性和超导电性之间的拓扑互偶关系 .这个理论能够为一大类具有本质性和挑战性的高温超导现象提供简明的解释 ,给出掺杂Mott绝缘体的超导电性的“指纹”特征 ,并给出若干有趣的理论预言 .  相似文献   

2.
3.
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces,with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by(bi-) modules over Frobenius algebras.  相似文献   

4.
According to the general classification of topological insulators, there exist one-dimensional chirally (sublattice) symmetric systems that can support any number of topological phases. We introduce a zigzag fermion chain with spin-orbit coupling in magnetic field and identify three distinct topological phases. Zero-mode excitations, localized at the phase boundaries, are fractionalized: two of the phase boundaries support ±e/2 charge states while one of the boundaries support ±e and neutral excitations. In addition, a finite chain exhibits ±e/2 edge states for two of the three phases. We explain how the studied system generalizes the Peierls-distorted polyacetylene model and discuss possible realizations in atomic chains and quantum spin Hall wires.  相似文献   

5.
Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap are protected by time-reversal symmetry. When a proper kind of antiferromagnetic long-range order is established in a topological insulator, the system supports axionic excitations. In this Letter, we study theoretically the electronic states in a transition metal oxide of corundum structure, in which both spin-orbit interaction and electron-electron interaction play crucial roles. A tight-binding model analysis predicts that materials with this structure can be strong topological insulators. Because of the electron correlation, an antiferromagnetic order may develop, giving rise to a topological magnetic insulator phase with axionic excitations.  相似文献   

6.
《Physics letters. A》2020,384(14):126285
We study classification of anti-Hermitian topological insulators based on the discrete symmetries: time-reversal, particle-hole and chiral symmetries. Contrary to the most general form of non-Hermitian systems, bulk boundary correspondence can hold in anti-Hermitian topological systems. We map a topologically nontrivial Hermitian Hamiltonians into an anti-Hermitian system and we show that the standard table of topological insulators can be used for anti-Hermitian Hamiltonians.  相似文献   

7.
Topological photonics provides a new opportunity for the examination of novel topological properties of matter, in which the energy band theory and ideas in topology are utilized to manipulate the propagation of photons. Since the discovery of topological insulators in condensed matter, researchers have studied similar topological effects in photonics.Topological photonics can lead to materials that support the robust unidirectional propagation of light without back reflections. This ideal transport property is unprecedented in traditional optics and may lead to radical changes in integrated optical devices. In this review, we present the exciting developments of topological photonics and focus on several prominent milestones of topological phases in photonics, such as topological insulators, topological semimetals, and higher-order topological phases. We conclude with the prospect of novel topological effects and their applications in topological photonics.  相似文献   

8.
9.
An important characteristic of topological band insulators is the necessary presence of in-gap edge states on the sample boundary. We utilize this fact to show that when the boundary is reconnected with a twist, there are always zero-energy defect states. This provides a natural connection among novel defects in the two-dimensional p{x}+ip{y} superconductor, the Kitaev model, the fractional quantum Hall effect, and the one-dimensional domain wall of polyacetylene.  相似文献   

10.
Levin-Wen models are microscopic spin models for topological phases of matter in (2+1)-dimension. We introduce a generalization of such models to (3 + 1)-dimension based on unitary braided fusion categories, also known as unitary premodular categories. We discuss the ground state degeneracy on 3-manifolds and statistics of excitations which include both points and defect loops. Potential connections with recently proposed fractional topological insulators and projective ribbon permutation statistics are described.  相似文献   

11.
Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties,including nontrivial topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.  相似文献   

12.
13.
A honeycomb lattice model exhibiting the quantum spin-Hall effect is proposed, where the low-energy properties of the electrons are mainly determined by the energy spectrum in the vicinity of the Γ point, for suitable parameters. The nontrivial topology of the energy bands is revealed by calculating the Chern numbers, Berry curvature distribution, and edge state spectrum. We further show that in the continuum limit, the model Hamiltonian is equivalent to the effective model for the surface states in thin films of three-dimensional topological insulators. As a consequence, this lattice model provides a useful tool for numerical simulation of the physical properties of the surface states.  相似文献   

14.
We introduce an exactly solvable SU(2)-invariant spin-1/2 model with exotic spin excitations. With time reversal symmetry (TRS), the ground state is a spin liquid with gapless or gapped spin-1 but fermionic excitations. When TRS is broken, the resulting spin liquid exhibits deconfined vortex excitations which carry spin-1/2 and obey non-Abelian statistics. We show that this SU(2) invariant non-Abelian spin liquid exhibits the spin quantum Hall effect with quantized spin Hall conductivity σ(xy)(s)=?/2π, and that the spin response is effectively described by the SO(3) level-1 Chern-Simons theory at low energy. We further propose that a SU(2) level-2 Chern-Simons theory is the effective field theory describing the topological structure of the non-Abelian SU(2) invariant spin liquid.  相似文献   

15.
In this paper, we investigate topological phases of α-graphyne with tight-binding method. By calculating the topological invariant Z2 and the edge states, we identify topological insulators. We present the phase diagrams of α-graphyne with different filling fractions as a function of spin-orbit interaction and the nearest-neighbor hopping energy. We find there exist topological insulators in α-graphyne. We analyze and discuss the characteristics of topological phases of α-graphyne.  相似文献   

16.
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.  相似文献   

17.
We have performed angle-resolved photoemission spectroscopy on TlBiSe?, which is a member of the ternary chalcogenides theoretically proposed as candidates for a new class of three-dimensional topological insulators. We found direct evidence for a nontrivial surface metallic state showing an "X"-shaped energy dispersion within the bulk-band gap. The present result unambiguously establishes that TlBiSe? is a strong topological insulator with a single Dirac cone at the Brillouin-zone center. The observed bulk-band gap of 0.35 eV is the largest among known topological insulators, making TlBiSe? the most promising material for studying room-temperature topological phenomena.  相似文献   

18.
Fu L 《Physical review letters》2011,106(10):106802
The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal surfaces. These topological crystalline insulators are the counterpart of topological insulators in materials without spin-orbit coupling. Their band structures are characterized by new topological invariants. We hope this work will enlarge the family of topological phases in band insulators and stimulate the search for them in real materials.  相似文献   

19.
Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.  相似文献   

20.
《Physics letters. A》2020,384(4):126094
A non-Hermitian topological insulator is fundamentally different from conventional topological insulators. The non-Hermitian skin effect arises in a nonreciprocal tight binding lattice with open edges. In this case, not only topological states but also bulk states are localized around the edges of the nonreciprocal system. We discuss that controllable switching from topological edge states into topological extended states in a chiral symmetric non-Hermitian system is possible. We show that the skin depth decreases with non-reciprocity for bulk states but increases with it for topological zero energy states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号