首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-ray diffraction, photoluminescence, afterglow emission spectra and long-lasting phosphorescence (LLP) decay curves are used to characterize this phosphor. After irradiation by a 290-nm UV light for 3 rain, the Pr^3+-doped La2Ti2O7 phosphor emits intense red emitting afterglow from the ^1D2 →^ 3H4 transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. The afterglow decay curve of the Pr^3+-doped La2Ti2O7 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this red light emitting LLP phosphor is also discussed based on the experimental results.  相似文献   

2.
The photoluminescence properties and energy transfer of a new Ce3+/pr3+/Eu3+ co-doped solid-solution composi- tion of Sr2.975-xLaxAlO4+xF1-x (LSAF) phosphor are investigated. Upon doping Pr3+ into lattices of LSAF:Ce host, a shoulder emission peak is observed at about 620 nm, owing to the transition of 1D2 →3H4. Addition of Eu3+ to LSAF:Ce3+, Pr3+ phosphor results in a sharp emission peaked at 675 nm for the 5D0 →TF3 transition and an increase of the intensity of red emission for Pr3+ with increasing Eu3+ concentration. The pathways of energy transfer among Ce3+, Pr3+, and Eu3+ are proposed to be responsible for color addition of a red component to the primary yellow emission, enabling a potential adjustable color for blue excitable warm white.  相似文献   

3.
The structure and photoluminescence (PL) properties of Sr3 SiO5: Sm3+ and Li+-doped Sr3SiOs: Sm3+ red-emitting phosphors were investigated. Samples were prepared by the high-temperature solid-state method. PL spectra show that the concentration quenching occurs when the Sm3+ concentration is beyond 1.3 mol% in Sr3SiOs: Sm3+ phosphor without doping Li+ ions. The concentration-quenching mechanism can be explained by the electric dipole-dipole interaction of Sm3+ ions. The incorporation of Li+ ions into Sr3SiOs: Sm3+ phosphors, as a charge compensator, improves the PL properties. The lithium ions also suppress the concentration quenching in Sm3+ with concentration increased from 1.3 tool% to 1.7 tool%.  相似文献   

4.
Trapping effects in CdSiO3:In^3+ long afterglow phosphor based on photoluminescence (PL) and thermoluminescence (TL) curves are studied. The results of TL show that two intrinsic defects associated with peaks at 346 and 418 K appear in the undoped CdSiO3 phosphor; whereas only one strong cadmium vacancy VCd^11 defect associated with peak at 348 K appears in the Cd1-xInxSiO3 phosphor due to the chemical nonequivalent substitutions of Cd^2+ ions by In^3+ ions. This chemical nonequivalent substitution of In^3+ ions into the CdSiO3 host produced the highly dense cadmium vacancy VCd^11 trap level at 348 K, which resulted in the origin of the long afterglow phenomenon. The findings has enlarged the family of non-rare-earth doped long afterglow phosphors available, and offers a promising approach for searching long afterglow phosphor.  相似文献   

5.
The upconversion energy transfer mechanism in Tb^3+-Yb^3+ co-doped SiO2-Al2O3-CaF2 glass is investigated by time-resolved spectra. The effect of donor ion Yb^3+ is involved in the dynamic decay behavior of acceptor ion Tb^3+, which provides direct proof for the energy transfer from Yb^3+ to Tb^3+. The pump power dependence curves show that the upconversion luminescence is a two-photon process. The measured decay curves of the 5D4 state (Tb^3+) contain two parts: a slow decay process corresponding to its radiation, and a fast one with a decay parameter approximately twice the lifetime of the ^2F5/2 state (Yb^3+ ). The fast decay process is contradictory to the generally accepted cooperative sensitization upconversion rate equation model. Since the effect of the host environmental is excluded by comparative experiments, we believe that there should be another energy transfer mechanism in Tb^3+-Yb^3+ co-doped SiO2-Al2O3-CaF2 glass in addition to the cooperative sensitization process.  相似文献   

6.
符史流  尹涛  柴飞 《中国物理》2007,16(10):3129-3133
Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.  相似文献   

7.
A blue emitting phosphor Sr3Bi(PO4)3:Eu2+ is synthesized luminescent property is investigated. Sr3Bi(PO4 )3 :Eu^2+ can by a high-temperature solid state method, and its create blue emission under the 332 radiation excitation, and the prominent luminescence in blue (423nm) due to the 4fSd^1→4f^7 transition of the Eu^2+ ion. The crystallographic sites of the Eu^2+ ion in Sr3Bi(PO4)3 are analyzed, and the 420 and 440 nm emission peaks of the Eu^2+ ion are assigned to the nine-coordination and eight-coordination, respectively. The emission intensity of Sr3Bi(PO4)3:Eu^2+ is influenced by the Eu^2+ doping content, and the concentration quenching effect is observed. The quenching mechanism is the dipole-dipole interaction, and the critical distance of energy transfer is calculated by the concentration quenching method to be approximately 1.72nm.  相似文献   

8.
A luminescence kinetic model for the green-emission long-afterglow phosphor (Sr0.5 Ca1.5)MgSi2O7:Eu^2 ,Dy^3 is proposed based on the studies of the thermoluminescence and isothermal decay curves at different temperatures.The isothermal decay curves at different temperatures meet the hyperbolic law and show to be dependent on temperature. Combined with the decay curves and the thermoluminescence curves, it can be concluded that the long afterglow of this material originates from the traps with energy distribution rather than a single level trap.Upon illumination with ultra-violet or visible light, the trap filling can proceed via excitation of 4f electrons to the 5d level of Eu^2 ions. After excitation, 5d electrons can be transferred to the trap related to Dy3 ions, and Eu^3 is left behind. Upon subsequent heating, the electron is released from this trap and recombines with Eu^3 to produce Eu^2 emission.  相似文献   

9.
We focus on the investigation of the spatial distribution and temporal evolution of N2(A3Σ+u, ν=0) in a very early afterglow of a pulsed dc nitrogen discharge. The results indicate that a fast quenching process of N2(A3Σ+u, ν=0) exists in the very early afterglow. We study the dependence of this fast quenching process on the discharge pressure 20–40 torr. It seems that this fast quenching behavior of N2(A3Σ+u, ν=0) found in our experiment can be ascribed to the combined action of pooling reaction and collisions with N atoms through N2(A3Σ+u)+N2(A3Σ+u)→ N2*+N2(N2*=N2(B3Πg, C3Πu, C'3Πu, C"5Πu)) and N2(A3Σ+u)+N(4S)→N(2P)+N2, respectively. Meanwhile, the decay studies of N2(A3Σ+u, ν=0) near the anode and cathode infer that the production of N(4S) atoms does not distribute uniformly along the axis of the discharge gap at relatively low pressure, and this effect becomes gradually inconspicuous with the increasing discharge pressure.  相似文献   

10.
We report the photoluminescence(PL) of Eu^3+-doped glass with Bi^3+as a sensitizer. The specific glass system with the strong enhancement of the red emission of Eu3+is obtained by adding a small number of Bi3+ions instead of increasing the Eu^3+ concentration. The emission band of Bi3+overlaps with the excitation band of Eu^3+ and the lifetime decay curves,resulting in a very efficient energy transfer from Bi^3+ to Eu^3+. The probability of energy transfer is strongly dependent on Bi^3+ concentration. In addition, the intensity of 4f–4f transition is much stronger than that of a charge-transfer(CT) band in the excitation spectrum, which indicates that the Na2O–Ca O–Ge O2-Si O2 glass is a suitable red-emitting phosphor with high stability as a candidate for light-emitting diodes(LEDs).  相似文献   

11.
A series of aAl5O12:Ce (YAG:Ce) phosphors doped with different Si4+ concentrations is prepared by solid-state reaction. The temperature dependent characteristics of luminescent spectrum and decay time of Ce3+ are investigated. With Si4+ doped, the emission spectrum shows a blue shift clue to a decrease of the splitting of 5d levels of Ce3+ ion. The thermal stability is greatly improved by adding Si4+ because the activation energy AE increases from 0.1836 eV to 0.2401 eV. The study of the decay times against temperature for various doping concentrations of Si4+ shows that the calculated nonradiative decay rate is affected by Si4+ substitution. The results are explained by the configurational coordinate diagram.  相似文献   

12.
Sr2ScAlO5:Eu^2+, a red oxide phosphor with a perovskite-type structure, has been synthesized through a solid-state reaction and its luminescence properties have been investigated. An absorption band centering at 450 nm is observed from the diffuse reflection spectra and the excitation spectra, indicating that the phosphor can match perfectly with the blue light of InGaN light-emitting diodes. A broad red emission band at 620 nm is found from the emission spectra, originating from the 4f^65d-4f^7 transition of the Eu^2+ ions. The best doping content of Eu in this material is about 5%. S Sr2ScAlO5:Eu^2+ is a highly promising red phosphor for use in white light-emitting diodes.  相似文献   

13.
This paper synthesizes the Sr2SiO4:Eu^2+ phosphor by high temperature solid-state reaction. The emission spectrum of Sr2SiO4 : Eu^2+ shows two bands centred at 480 and 547 nm, which agree well with the calculation values of emission spectrum, and the location of yellow emission of Sr2SiO4 : Eu^2+ is influenced by the Eu^2+ concentration. The excitation spectrum for 547 nm emission has two bands at 363 and 402 nm. The emission spectrum of white light emitting diodes (w-LEDs) based on Sr2SiO4 : Eu^2+ phosphor + InGaN LED was investigated.  相似文献   

14.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

15.
The novel vacuum ultraviolet (VUV) excited Na3 Y9O3 (BO3)8:Tb^3+ (NYOB:Tb^3+) green phosphor is prepared. Strong VUV photoluminescence and high quenching concentration of Tb^3+ (20 wt%) are observed in NYOB: Tb^3+ and the strong emission are correlated with the unique layer-type structure of NYOB. All the characteristic 4 f - 5d transitions of Tb^3+ and the host absorption band in VUV region are identified in the excitation spectrum. Based on the results, the energy levels scheme of Tb^3+ in NYOB:Tb^3+ is first established. This newly developed NYOB:Tb^3+ phosphor shows excellent optical properties when compared with the commercial Zn2SiO4:Mn^2+ and would be a potential VUV-excited green phosphor.  相似文献   

16.
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.  相似文献   

17.
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).  相似文献   

18.
Baryon magnetic moments of p, n, ∑^+,∑^-,Ξ^0, Ξ^- and the beta decay ratios (G A/Gv ) of n → p, ∑^-→n and Ξ^0→∑^+ are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component in nucleon is small.  相似文献   

19.
Novel Dy^3+-doped GdPO4 white light phosphors with a monoclinic system are successfully synthesized by the hydrothermal method at 240℃. The strong absorption at around 147nm in the excitation spectrum is assigned to the host absorption. It is suggested that the vacuum ultraviolet excited energy is transferred from the host to the Dy^3+ ions. The f - d transition of the Dy^3+ ion is observed to be located at 182nm, which is consistent with the calculated value using Dorenbos's expression. Under 147nm excitation, Gd0.92PO4:0.08Dy^3+ phosphor exhibits two emission bands located at 572 nm (yellow) and 478 nm (blue), which correspond to the hypersensitive transitions ^4 F9/2-^6 H13/2 and ^4 F9/2-^6 H15/2. The two emission bands lead to the white light. Because of the strong absorption at about 147nm, Gd0.92PO4:0.08Dy^3+ under vacuum ultraviolet excitation is an effective white light phosphor, and has promising applications to mercury-free lamps.  相似文献   

20.
王惠  蓝文广  林位株  莫党 《中国物理》1996,5(9):662-669
Presented in this paper are systematic studies of photoiuduced exciton bleaching dynamics in the polymers with nondegenerate ground state, such as polydiacetylene, polythiophene and polyaniline. From a three-level model, the photoexcitation and relaxation of the exciton bleaching in the polymers are simulated. The results show that the exciton bleaching decay is composed of two components, the fast component and the slow component. For the fast component, the speed of exciton bleaching decay depends on the way in which the excitons relax. When the relaxation of the exciton to the ground state is dominant, the polymers exhibit an ultrafast initial bleaching relaxation; when the relaxation of the exciton to the self-trapped exciton state is dominant, the polymers exhibit a slower initial bleaching relaxation than that in the former case, For the slow component, the exciton bleaching decay is due to the relaxation of the self-trapped excitons to the ground state. Using femtosecond time-resolved pump-probe technology, we measured the relaxation dynamics of the photoinduced exciton bleaching in the emeraldine base form of polyaniline. Fitting the experimental data to the theoretical model indicates that the fast component arises from the relaxation of excitons to the ground state (~100fs) and the slow component arises from the relaxation of self-trapped excitons to the ground state (~30 ps).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号