首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide(ZnO) nanorods are prepared using equimolar solution of zinc nitrate((Zn(NO3)2) and hexamethylenetetramine(C6H12N4) by the hydrothermal technique at 80 C for 12 h. Epitaxial growth is explored by X-ray diffraction(XRD) patterns, revealing that the ZnO nanorods have a hexagonal(wurtzite) structure. Absorption spectra of ZnO are measured by UV–visible spectrometer. The surface morphology is investigated by field emission scanning electron microscopy(FESEM). The synthesized ZnO nanorods are used for detecting the 150 C hydrogen gas with a concentration over 1000 ppm. The obtained results show a reversible response. The influence of operating temperature on hydrogen gas detecting characteristic of ZnO nanorods is also investigated.  相似文献   

2.
Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 ℃ using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 ℃-250 ℃. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 ℃, whereas, it behaves as a p-type semiconductor below 50 ℃. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.  相似文献   

3.
The hydrated shell of both Fe2+ and Fe3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe2+ and Fe3+ are characterized by a regular octahedron with an Fe-O distance of 2.08 for Fe2+ and 1.96 for Fe3+, and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe2+ and Fe3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe3+ aqueous solution may be assigned to the contribution of the charge transfer.  相似文献   

4.
Cu2ZnSnS4(CZTS) films are successfully prepared by co-electrodeposition in aqueous ionic solution and sulfurized in elemental sulfur vapor ambient at 400 C for 30 min using nitrogen as the protective gas.It is found that the CZTS film synthesized at Cu/(Zn+Sn)=0.71 has a kesterite structure,a bandgap of about 1.51 eV,and an absorption coefficient of the order of 10 4 cm 1.This indicates that the co-electrodeposition method with aqueous ionic solution is a viable process for the growth of CZTS films for application in photovoltaic devices.  相似文献   

5.
Cu2ZnSnS4(CZTS) films are successfully prepared by co-electrodeposition in aqueous ionic solution and sulfurized in elemental sulfur vapor ambient at 400 C for 30 min using nitrogen as the protective gas.It is found that the CZTS film synthesized at Cu/(Zn+Sn)=0.71 has a kesterite structure,a bandgap of about 1.51 eV,and an absorption coefficient of the order of 10 4 cm 1.This indicates that the co-electrodeposition method with aqueous ionic solution is a viable process for the growth of CZTS films for application in photovoltaic devices.  相似文献   

6.
We describe a surface plasmon resonance-based fiber sensor based on a side-polished graded-index mul- timode fiber, in which an Al-doped zinc oxide/gold (AZO/Au) bilayer is deposited on the side-polished surface of the fiber core to improve the detection sensitivity of the device. The AZO/Au layer is used as the active sensing member of the device with a combination of a 75-nm-thick AZO layer and a 40-nm-thick Au layer. Such a device is then applied to the concentration measurement of CHaCOONa solutions, as an example showing a good response to concentration variation. The results indicate that the additional AZO layer in the active sensing member may lead to higher detection sensitivity and greater measurement stability in the measurements of solution concentration.  相似文献   

7.
The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The m  相似文献   

8.
Nanosized Ni particles with an average diameter of about 8 nm were prepared by reducing of NiCl 2 with sodium borohydride (NaBH 4 ) in aqueous solution. By moderate annealing in protective atmosphere, the composite grew up to be 15-20 nm particles. Both of the as-prepared and annealed Ni particles were coated by a layer of manganese oxide via decomposition reaction in aqueous KMnO4 solution. Hysteresis loops of as-prepared samples show a large increase in the magnetization with decreasing temperature and an unsaturated component at high magnetic field. In contrast, the ferromagnetic characteristics of annealed one are much stronger with large magnetization and coercivity. The thermomagnetic curves verified the coexistence of ferromagnetic Ni and antiferromangetic Mn oxide phases. But there exists no exchange bias behavior in the samples, even though the interface structure between the ferromagnetic Ni core and the antiferromagnetic manganese oxides has been distinctly formed. The absence of exchange bias probably originates from the weak ferromagnetic characteristic of Ni cores.  相似文献   

9.
张凌云  王鹏业 《中国物理快报》2008,25(10):3818-3821
We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration  相似文献   

10.
FePt magnetic nanoparticle systems are an excellent candidate for ultrahigh-density magnetic recording. Monodisperse FePt nanoparticles are synthesized by superhydride reduction of FECl2·4H2O and Pt (acac)2 at 263℃ under N2 atmosphere. Transmission electron microscopy (TEM) images show monosize EePt nanoparticles with diameter of 4 nm and a standard deviation of about 10%. The average distance between monodispesre particles is nearly 3 nm, and oleic acid and oleylamine surround the nanoparticles as surfactants. Stability investigation of nanoparticle colloidal solution is done via speetrophotometery analysis. The results for FePt nanoparticles dispersed in hexane indicate that adding surfactants with concentration of 3 × 10^-3 part by volume for centrifugation stage increases the stability of FePt nanoparticles solution with concentration of 16 mg/mL, about 67%.  相似文献   

11.
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M–H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M–H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.  相似文献   

12.
The experimental investigation of aqueous solution of the gelatin has been made by usingultrasound at frequency 11.4 MHz.The relation between concentration and ultrasound absorptiondoes not reach its saturated value even at the weight concentration of the solution c=8.5%. When the concentration is more than l.5%,the solution transforms into jelly under room tem-porature,but the ultrasonic absorption does not change in the whole transformation proces.Whenthe temperature of the solution is decreased to the vicinity of gelling point,the viscosity η of the solutionincreases gradually with time,making the value of sound absorption calculated from η largerthan the experimental one by several orders.But when the temperature of the solution is appropriatelyhigher than the gelling point,the calculated value of sound absorption is smaller than the experimentalone but with the same order. The temperature at which the maximum sound velocity occurs in the concentrated(c=6.4%)solution is not much different from that  相似文献   

13.
A high-sensitivity long-period fiber grating (LPFG) methane sensor that contains a compact and uniform styrene-acrylonitrile (SAN)/cryptophane A nanofilm is presented. The sensor is prepared by using an automatic dip-coater in a solution of cryptophane A, SAN resin dissolved in ortho-dichlorobenzene, a low- volatile solvent. The effect of film thickness on the LPFG's resonant wavelength is thoroughly investigated. The optimum sensor among the three LPFGs with different film thicknesses is directly used to detect the methane concentration in a coal mine gas sample. The results indicate that the sensors with film thicknesses of 484 to 564 nm exhibit a redshifted resonant wavelength when the methane concentration is increased from 0% to 3.5% (vol). The data demonstrates that the sensor with a film thickness of 484 nm has remarkable sensitivity (~0.633 nm%-X), and its detection limit can reach 0.2%. The methane concentrations determined by our sensor are consistent with those obtained by gas chromatography.  相似文献   

14.
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-Migned large-area multi-finger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880μm^2) is fabricated with 2μm double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVcEo is 10 V and the collector-base junction breakdown voltage BVcBo is 16 V with collector doping concentration of 1 × 10^17 cm^-3 and thickness of 400nm. The device exhibited a maximum oscillation frequency fmax of 35.5 GHz and a cut-off frequency fT of 24.9 GHz at a dc bias point of Ic = 70 mA and the voltage between collector and emitter is VCE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from OdBm to 21 dBm. A maximum output power of 29.9dBm (about 977mW) is obtained at an input power of 18.SdBm with a gain of 11.47dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, fmax and fT are improved by about 83.9% and 38.3%, respectively.  相似文献   

15.
A polymethyl-methacrylate(PMMA)acrylic sample cell using flow injection is developed in this research for the determination of nitrite in an aqueous media.The research focuses on exhibiting direct absorbance spectrophotometry of nitrite using concentration of samples ranging from 0.1078 to 1.725 ppm.Nitrite determination is done colorimetrically using the Greiss reagent method.This method is based on the reaction of nitrite with sulphanilamide acid and N-1-napthylamine(NED)utilizing diazo coupling,and a syringe is used to administer the nitrite solution.The sample cell being used possesses a diameter of 1mm with an overall size of 7.35×22 mm2.To gauge the direct absorbance,a wavelength range from 400to 650 nm has been selected for the testing,and the maximum absorbance is found to be at 545 nm.The validity of the proposed cell is explained in this letter.  相似文献   

16.
A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb1 - 3x/2NdxZr0.52Ti0.48O3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate after the reaction of zirconium nitrate with tetrabutyl titanate in the ethylene glycol system for preparing PNZT with an exact fraction of titanium content. It has been observed that the dopant of excess Nd ions can effectively improve the sintered densification and activity of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric properties of the PNZT ceramics are remarkably enhanced as compared with those of monolithic lead zirconate titanate (PZT). Especially, the supreme values of piezoelectric constant (d33) and dielectric constant (\it ε) for the PNZT are both about two times that of the monolithic PZT and moreover, the remnant polarization (Pr) also increases by 30%. According to the analysis of the structures and properties, we attribute the improvement in electrical properties to the lead vacancies caused by the doping of Nd ions.  相似文献   

17.
Transport of suspended sediment in open channel flow has an enormous impact on real life situations,viz. control and management of reservoir sedimentation, geomorphic evolution such as dunes, rivers, and coastlines etc. Transport entails advection and diffusion. Turbulent diffusion is governed by the concept of Fick’s law, which is based on the molecular diffusion theory, and the equation that represents the distribution of sediment concentration is the advection-diffusion equation. The study uses the existing governing equation which considers different phases for solid and fluid, and then couples the two phases. To deal with high-concentrated flow, sediment and turbulent diffusion coefficients are taken to be different from each other. The effect of hindered settling on sediment particles is incorporated in the governing equation, which makes the equation highly non-linear. This study derives an explicit closed-form analytical solution to the generalized one-dimensional diffusion equation representing the vertical sediment concentration distribution with an arbitrary turbulent diffusion coefficient profile. The solution is obtained by Homotopy Analysis Method, which does not rely on the small parameters present in the equation. Finally, the solution is validated by comparing it with the implicit solution and the numerical solution. A relevant set of laboratory data is selected to check the applicability of the model, and a close agreement shows the potential of the model in the context of application to high-concentrated sediment-laden open channel flow.  相似文献   

18.
王兴荣  郑浩平 《中国物理 B》2009,18(5):1968-1978
First-principles, all-electron, \textit{ab initio} calculations have been performed to construct an equivalent water potential for the electronic structure of serine (Ser) in solution. The calculation is composed of three steps. The first step is to search for the configuration of the Ser + NH2O system with a minimum energy. The second step is to calculate the electronic structure of Ser with the water molecule potential via the self-consistent cluster-embedding method (SCCE), based on the result obtained in the first step. The last step is to calculate the electronic structure of Ser with the dipole potential after replacing the water molecules with dipoles. The results show that the occupied states of Ser are raised by about 0.017~Ry on average due to the effect of water. The water effect can be successfully simulated by using the dipole potential. The obtained equivalent potential can be applied directly to the electronic structure calculation of protein in solution by using the SCCE method.  相似文献   

19.
The compositions of Sr(NO3)2 crystals grown from an aqueous solution doped with Ba^2 and Pb^2 were characterized by the electron probe microanalysis technique.It was found that Ba^2 is enriched in {100} sectors and Pb^2 in {111} sectors.The Raman spectra of different parts of these crystals at room temperature in the ranges of 1038-1070cm^-1 and 650-1150cm^-1 were investigated.The results indicated that barium and lead shift the Raman dominating peaks to the lower frequency and broaden the full width at half maximum.Furthermore,barium probably degrades the properties of the Sr(NO3)2 Raman shifter while lead is anticipated to improve it.  相似文献   

20.
王翀  王菲菲  付星球  张恩迪  许志 《中国物理 B》2011,20(5):50701-050701
Alpha-Fe2O3 nanorods are synthesized through a hydrothermal method with no surfactant introduced and ethanol sensors are fabricated from these nanorods.The device can respond to ethanol vapour in a concentration range from 1 to 1500 parts per million and shows both p-type and n-type responding characteristics during the investigation of the ethanol sensing.The sensor displays a p-type characteristic when the ethanol concentration is low and converted into an n-type characteristic as the concentration exceeds a certain value.Such a phenomenon is attributed to the chemisorbed oxygen,which leads to different modifications of the energy band at the surface,namely,depletion layer or inversion layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号