首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model describing surface quenching of isolated ion centres in nanocrystals is proposed based on the energy transfer between the doped ions and the nanocrystalline surface quenching centres. The quenching rate depends on the position of the ions in the nanocrystal, hence the decay curve under non-selective excitation is generally nonexponential. The decay curve calculated with this model is in good agreement with that of the ^4T1→^6A1 emission in ZnS:Mn^2+ nanocrystals.  相似文献   

2.
LiSrBO3 :Eu3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eua+ concentration on the emission spectrum of LiSrBO3:Eu3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipoledipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3 :Eua+ phosphor are enhanced.  相似文献   

3.
Mn2+, Pb2+共掺杂ZnS纳米材料制备及光致发光   总被引:1,自引:0,他引:1       下载免费PDF全文
徐扬子  胡鹤 《发光学报》2007,28(4):589-593
采用聚乙烯基吡咯烷酮(PVP)为表面包覆剂,在室温大气条件下的水溶液中制备了ZnS:Mn,Pb纳米晶。讨论了Mn2+和Pb2+掺杂量对ZnS纳米发光材料光致发光强度的影响,确定了Mn2+和Pb2+掺杂量相对于Zn2+的最佳的量的比,并对其发光机理进行了初步的探讨。  相似文献   

4.
闫阔  段昌奎 《发光学报》1998,19(1):8-13
纳米晶体ZnS:Mn2+中Mn2+粒子4T16A1的发光寿命比晶体减缩了5个量级,这颇令人费解,因为通常解除自旋禁戒的磁作用远无如此强的效应.假定基质态的自旋不为零,且考虑了Mn2+的d电子和基质之间的交换库仑作用.若基质存在比Mn2+4T1激发态能量略高的某种激发态,则这种交换库仑作用将导致这两种激发态之间的混合,从而可解除发光能级弛豫中的自旋禁戒.这种混合随基质颗粒尺寸的减小而加强.我们并对此机制进行粗略的数值估计,给出了和实验相容的结果.  相似文献   

5.
ZnS:Mn纳米晶的制备及其发光性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以C19H42BrN为表面活性剂,采用水热法合成了ZnS:Mn纳米晶,分别利用XRD、TEM、荧光光谱仪对其物相、形貌及光学性能进行了研究。结果表明:ZnS:Mn纳米晶为闪锌矿ZnS结构,颗粒近似球形,平均粒径为4~8 nm。荧光光谱显示,ZnS:Mn纳米晶的荧光发射峰强度随着Mn2+掺杂浓度和表面活性剂含量的增加而逐渐增强。  相似文献   

6.
单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质   总被引:1,自引:4,他引:1       下载免费PDF全文
以巯基乙酸为稳定剂,在水溶液中合成了单核/双壳结构的CdSe/CdS/ZnS纳米晶。在内核CdSe和外壳ZnS之间的内壳CdS作为晶格匹配调节层,能够很好的改善核/壳界面处的性能,而且,最外层ZnS能够最大程度地使激子受限。用TEM和XPS对纳米晶进行了表征,并且用光致发光光谱和吸收光谱对不同核壳结构的纳米晶的发光性能进行了比较,结果表明单核/双壳结构的纳米晶具有更加优异的发光特性。  相似文献   

7.
SiO2气凝胶中ZnS:Mn纳米微晶的发光性质   总被引:2,自引:0,他引:2  
利用溶胶-凝胶法在SiO2气凝胶中制得了ZnS-Mn纳米微晶,并对微晶的X射线衍射谱,激发0发射光谱、发光效率,时间分辨光谱进行了研究,讨论了发光性质变化的原因,实验表明,Mn2 在纳米微晶中的发光效率相对于体材料有明显的提高,弛豫时间也比在体材料中缩短了约一个数量级。  相似文献   

8.
纳米晶体ZnS∶Mn2+中Mn2+粒子4T1→6A1的发光寿命比晶体减缩了5个量级,这颇令人费解,因为通常解除自旋禁戒的磁作用远无如此强的效应.假定基质态的自旋不为零,且考虑了Mn2+的d电子和基质之间的交换库仑作用.若基质存在比Mn2+的4T1激发态能量略高的某种激发态,则这种交换库仑作用将导致这两种激发态之间的混合,从而可解除发光能级弛豫中的自旋禁戒.这种混合随基质颗粒尺寸的减小而加强.我们并对此机制进行粗略的数值估计,给出了和实验相容的结果.  相似文献   

9.
The Eu 2+ /Tb 3+ /Sm 3+ co-doped oxyfluoride glass ceramics containing Ba2LaF7 nanocrystals are prepared in the reducing atmosphere.The X-ray difiraction results show that Eu 2+ ,Tb 3+ and Sm 3+ ions are enriched into the precipitated Ba2LaF7 nanophase after the annealing process.It deduces efficient energy transfers from Eu 2+ to Tb 3+ and Sm 3+ and intenses warm white luminescence of the glass ceramics. Comparing with the glass,the luminescence quantum yield of the glass ceramics is also enlarged by about 3 times.This demonstrates the potential white light-emitting diode application of the glass ceramics produced in this letter.  相似文献   

10.
We investigate the influence of precursor molar ratio of [S^2-]/[Zn^2+] on particle size and photoluminescence (PL) of ZnS:Mn^2+ nanocrystMs. By changing the [S^2-]/[Zn^2+] ratio from 0.6 (Zn-rich) to 2.0 (S-rich), the particle size increases from nearly 2. 7nm to about 4.Ohm. The increase in the ratio of [S^2-]/[Zn^2+] cadses a decrease of PL emission intensity of ZnS host while a distinct increase of Mn^2+ emission. The maximum intensity for the luminescence of Mn^2+ emission is observed at the ratio of [S^2-]/[Zn^2+] ≈ 1.5. The possible mechanism for the results is discussed by filling of S^2- vacancies and the increase of Mn^2+ ions incorporated into ZnS lattices.  相似文献   

11.
ZnS:Cu, Eu nanocrystals with an average diameter of ~ 80 nm are synthesized using a hydrothermal approach at 200 C. The photoluminescence (PL) properties of the ZnS:Cu, Eu nanocrystals before and after annealing, as well as the doping form of Eu, are studied. The as-synthesized samples are characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry, and the excitation and emission spectra (PL). The results show that both Cu and Eu are indeed incorporated into the ZnS matrix. Compared with the PL spectrum of the Cu mono-doped sample, the PL emission intensity of the Cu and Eu-codoped sample increases and a peak appears at 516 nm, indicating that Eu 3+ ions, which act as an impurity compensator and activator, are incorporated into the ZnS matrix, forming a donor level. Compared with the unannealed sample, the annealed one has an increased PL emission intensity and the peak position has a blue shift of 56 nm from 516 nm to 460 nm, which means that Eu 3+ ions reduce to Eu 2+ ions, thereby leading to the appearance of Eu 2+ characteristic emission and generating effective host-to-Eu 2+ energy transfer. The results indicate the potential applications of ZnS:Cu, Eu nanoparticles in optoelectronic devices.  相似文献   

12.
A series of K3Gd1-x-y(PO4)2:xCe^3+, yTb^3+ phosphors are synthesized by the solid-sate reaction method. X-ray diffraction and photoluminescence spectra are utilized to characterize the structures and luminescence properties of the as-synthesized phosphors. Co-doping of Ce^3+ enhances the emission intensity of Tb^3+ greatly through an efficient energy transfer process from Ce^3+ to Tb^3+. The energy transfer is confirmed by photoluminescence spectra and decay time curves analysis. The efficiency and mechanism of energy transfer are investigated carefully. Moreover, due to the non- concentration quenching property of K3Tb(PO4)2, the photoluminescence spectra of K3Tb1-x(PO4)2:xCe^3+ are studied and the results show that when x = 0.11 the strongest Tb^3+ green emission can be realized.  相似文献   

13.
Novel Dy^3+-doped GdPO4 white light phosphors with a monoclinic system are successfully synthesized by the hydrothermal method at 240℃. The strong absorption at around 147nm in the excitation spectrum is assigned to the host absorption. It is suggested that the vacuum ultraviolet excited energy is transferred from the host to the Dy^3+ ions. The f - d transition of the Dy^3+ ion is observed to be located at 182nm, which is consistent with the calculated value using Dorenbos's expression. Under 147nm excitation, Gd0.92PO4:0.08Dy^3+ phosphor exhibits two emission bands located at 572 nm (yellow) and 478 nm (blue), which correspond to the hypersensitive transitions ^4 F9/2-^6 H13/2 and ^4 F9/2-^6 H15/2. The two emission bands lead to the white light. Because of the strong absorption at about 147nm, Gd0.92PO4:0.08Dy^3+ under vacuum ultraviolet excitation is an effective white light phosphor, and has promising applications to mercury-free lamps.  相似文献   

14.
15.
16.
17.
A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318--403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band.  相似文献   

18.
纳米晶Y2O3:Eu3+的合成及其光谱性质研究   总被引:7,自引:0,他引:7  
本文报道了草酸作为沉淀剂并添加表面活性剂合成了纳米晶Y2O3Eu3+的方法,其一次粒径为15~19nm。对样品的激发光谱、发射光谱及色坐标的测定结果表明与微米晶比较该纳米晶的发射光谱发生明显蓝移,激发光谱未见明显变化,猝灭浓度明显提高。荧光粉色坐标x=0.6479,y=0.3442,研究发现发光亮度随团聚尺寸增大而增强。  相似文献   

19.
A novel fishing rod-shaped GaN nanorod is successfully fabricated through a new method by using the two-step growth technology. This growth method is applicable to continuous synthesis and is able to produce a large number of single-crystalline GaN nanorods with a relatively high purity and at a low cost. X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy are used to characterize the as- synthesized nanorods. The results show that most of the nanorods consist of a main rod and a top curved thread. It is single-crystal GaN with hexagonal wurtzite structure. The representative photoluminescence spectrum at room temperature exhibits a strong UV light emission band centered at 370.8nm. Furthermore, a possible two-stage growth mechanism of the fishing rod-shaped GaN nanorod is also briefly discussed.  相似文献   

20.
A complete solid solutions with monophasic zircon-type structure of vanadates of formula GdxBio.95-xVO4:0.05Eu3+ (x = 04).95) are synthesized by combined method of co-precipitation and hydrothermal synthesis. Their microstructures and morphologies are characterized by X-ray powder diffraction and transmission electronic microscope, and the results show that each of all the samples has a monophasic zircon-type structure. The absorption spectrum of the prepared phosphor shows a blue-shift of the fundamental absorption band edge with increasing the gadolinium content. Under UV-light and visible-light excitation, all the prepared phosphors show the typical luminescence properties of Eu3+ in the zircon-type structure. The emission intensity of GdxBi0.95-xVO4:0.05Eu3+ (x = 0.55) is strongest in all samples under UV-light and visible-light excitations. Finally, the mechanisms of luminescence of Eu3+ in the GdxBi0.95-xVO4:0.05Eu3+ (x = 0-0.95) solid solutions are analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号