首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Measurements of the sound absorption coefficient in test objects containing solid microparticles randomly distributed over the object volumes are carried out. Two methods are used for this purpose: the standard echo-pulse insert-substitution method and a modified method using phase conjugation of ultrasound. The test objects are made from gelatin, and the size of the particles introduced in it is chosen to allow measurements in both the long- and medium-wavelength scattering modes of the probing beam. It is shown that, in the first scattering mode, in which the presence of particles causes additional viscous and temperature losses, the two aforementioned methods give identical results. In the second scattering mode, in which the dominant mechanism of additional loss is elastic scattering, the use of phase conjugation allows an almost complete reconstruction of the scattered field and, hence, a more reliable upper estimate for the coefficient of ultrasonic absorption in the test objects.  相似文献   

2.
Studies of the stimulating effect of ultrasound on human receptor structures have recently become more intensive in connection with the development of promising robotic techniques and systems, sensors, and automated control systems, as well as with the use of taction in the design of a human-machine interface. One of the promising fields of research is the development of tactile displays for transmission of sensory data to a human by an acoustic method based on the effect of radiation pressure. In this case, it is necessary to generate rapidly changing patterns on a display (symbols, letters, digits, etc.), which may often have a complex shape. It is demonstrated that such patterns can be created by the generation of multiple-focus ultrasonic fields with the help of two-dimensional phased arrays whose elements are randomly positioned on the surface. The parameters for such an array are presented. It is shown that the arrays make it possible to form the regions of action by focused ultrasound with various necessary shapes and the sidelobe (or other secondary peak) intensity level acceptable for practical purposes. Using these arrays, it is possible to move the set of foci off the array axis to a distance of at least ±5 mm, which corresponds to the display dimensions. It is possible, on the screen of a tactile display, to generate the regions of action with a very complex shape, for example, Latin letters. This opportunity may be of interest, for example, for the development of systems that enable a blind person to perceive the displayed text information by using the sense of touch.  相似文献   

3.
The effect of ultrasonic intensity on the crystal structure of palm oil   总被引:6,自引:0,他引:6  
It has been known for a long time that both the crystal structure and kinetics of crystallisation can be affected by ultrasound. In the past systems used have relied on high power ultrasonic probes to produce crystals. The majority of these probes produce cavitation in the system and it has been difficult to differentiate between effects caused by the ultrasound alone or by the cavitation produced by ultrasound on the crystal structure. Some materials, such as fats, are very susceptible to the production of free radicals that lead to "off-flavours" being obtained. These "off-flavours" are easily produced when the standard high power probes are used. This has meant that, although the crystal structure of the final product might be improved, the presence of 'off' flavours has prevented ultrasound being considered as a commercial technique for the crystallisation of edible fats. At Unilever R&D a system has been developed which can investigate the effect of ultrasound on the crystallisation of fats under controlled conditions covering a range of intensities and cooling rates. The intensity levels used were both below and above the cavitational threshold. By keeping the cooling regime constant it has been possible to show that the structure of the final product can vary from a material looking similar to cottage cheese through to a fine cream simply by varying the ultrasonic intensity. This paper describes the effect of ultrasound on both the crystal structure and kinetics of palm oil crystallisation at intensities below and above the cavitational threshold.  相似文献   

4.
We consider physical principles of visualization and diagnostics of the morphological and functional state of biological tissues on the basis of spectral analysis of polarization properties of probing light diffusely reflected by studied objects. Various modifications of the polarization reflectance technique, including the use of partially coherent probing radiation with changeable coherence length, are discussed. The results of application of the discussed techniques for morphological and functional diagnostics of in vivo human skin are presented.  相似文献   

5.
This review is devoted to the analysis of studies and implementations related to the use of focused ultrasound for functional effects on neuroreceptor structures. Special attention was paid to the stimulation of neuroreceptor structures in order to input sensory information to humans. This branch of medical and physiological acoustics appeared in Russia in the early 1970s and was being efficiently developed up to the late 1980s. Then, due to lack of financial support, only individual researchers remained at this field and, as a result, we have no full- fledged theoretical research and practical implementations in this area yet. Many promising possibilities of using functional effects of focused ultrasound in medicine and physiology have remained unimplemented for a long time. However, new interesting ideas and approaches have appeared in recent years. Very recently, very questionable projects have been reported related to the use of ultrasound for targeted functional effects on the human brain performed in some laboratories. In this review, the stages of the development of scientific research devoted to the functional effects of focused ultrasound are described. By activating the neuroreceptor structures of the skin by means pulses of focused ultrasound, one can cause all the sensations perceived by human beings through the skin in everyday life, such as tactile sensations, thermal (heat and cold), tickling, itching, and various types of pain. Stimulation of the ear labyrinth of humans with normal hearing using amplitude-modulated ultrasound causes auditory sensations corresponding to an audio modulating signal (pure tones, music, speech, etc.). Activation of neuroreceptor structures by means of focused ultrasound is used for the diagnosis of various neurological and skin diseases, as well as hearing disorders. It has been shown that the activation is related to the mechanical action of ultrasound, for example, by the radiation force, as well as to the direct action of ultrasonic vibrations on nerve fibers. The action of the radiation force is promising for the realization of the possibility of blind and even deaf-and-blind people to perceive text information on a display using tactile sensations caused by ultrasound. Very different methods of using ultrasound for local stimulation of neuroreceptor structures are discussed in this review. Among them are practical methods that have been already tested in a clinic, as well as pretending to be sensational methods that are hardly feasible in the foreseeable future.  相似文献   

6.
7.
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.  相似文献   

8.
Ultrasonic techniques allow examination of internal structure and the detection of discontinuities at the interface of various joints. Contact joints obtained via diffusion welding, sintering, and other adhesive methods are investigated using impulse acoustic microscopy. It is shown that short probing pulses of focused ultrasound with frequencies of 50–100 MHz reveal areas with different adhesion strengths, areas of partial contact, peeling or air bubbles, and buffer layer thicknesses. Mechanisms of acoustic contrast at such interfaces are discussed. The results are of interest to specialists in the field of high-resolution ultrasonic nondestructive testing. They are needed to predict the failure mechanisms of composite products, from carbon fiber–reinforced plastics for the aviation industry to high-density ceramics used in medical prosthetics.  相似文献   

9.
Echolocating bats transmit ultrasonic vocalizations and use information contained in the reflected sounds to analyze the auditory scene. Auditory scene analysis, a phenomenon that applies broadly to all hearing vertebrates, involves the grouping and segregation of sounds to perceptually organize information about auditory objects. The perceptual organization of sound is influenced by the spectral and temporal characteristics of acoustic signals. In the case of the echolocating bat, its active control over the timing, duration, intensity, and bandwidth of sonar transmissions directly impacts its perception of the auditory objects that comprise the scene. Here, data are presented from perceptual experiments, laboratory insect capture studies, and field recordings of sonar behavior of different bat species, to illustrate principles of importance to auditory scene analysis by echolocation in bats. In the perceptual experiments, FM bats (Eptesicus fuscus) learned to discriminate between systematic and random delay sequences in echo playback sets. The results of these experiments demonstrate that the FM bat can assemble information about echo delay changes over time, a requirement for the analysis of a dynamic auditory scene. Laboratory insect capture experiments examined the vocal production patterns of flying E. fuscus taking tethered insects in a large room. In each trial, the bats consistently produced echolocation signal groups with a relatively stable repetition rate (within 5%). Similar temporal patterning of sonar vocalizations was also observed in the field recordings from E. fuscus, thus suggesting the importance of temporal control of vocal production for perceptually guided behavior. It is hypothesized that a stable sonar signal production rate facilitates the perceptual organization of echoes arriving from objects at different directions and distances as the bat flies through a dynamic auditory scene. Field recordings of E. fuscus, Noctilio albiventris, N. leporinus, Pippistrellus pippistrellus, and Cormura brevirostris revealed that spectral adjustments in sonar signals may also be important to permit tracking of echoes in a complex auditory scene.  相似文献   

10.
A rapid ultrasonic B-scan instrument has been constructed for scanning the heart. An important factor in its design has been the need to make the maximum use of the points on the chect from which ultrasound can be transmitted into the heart avoiding bone and lung. A high degree of flexibility in the manipulation of the direction of the ultrasound beam allows the cardiac structures to be thoroughly scanned. Finally, since the system operates by rapidly moving a standard transducer, it is possible to use it to perform the more established ultrasonic techniques for heart examination such as time-motion scanning.  相似文献   

11.
Kimoto K  Ueno S  Hirose S 《Ultrasonics》2006,45(1-4):152-164
This paper presents calibration-free crack sizing techniques based on ultrasonic imaging. The techniques are intended for 2D (line) surface-breaking cracks with the size of the incident wavelength or greater. The probing wave mode is the anti-plane shear wave (SH-wave). Two methods are employed for the ultrasonic imaging. One is a synthetic aperture focusing technique (SAFT) and the other is a computed time-reversal focusing technique (TRFT). In this paper, those methods are modified so that crack tips are located directly from measured A-scope waveforms without any calibration experiments. The results are shown as a peak in the ultrasonic image created by the respective methods. Reasonable accuracies of the proposed techniques are demonstrated first for the sizing of slits with known depths. The techniques are applied thereafter to the sizing of fatigue cracks. Since fatigue cracks may not be open without an external load, ultrasonic measurements are taken with and without external loads. The results of the imaging show that the depths of open cracks can be estimated accurately. It is also shown that crack opening (closing) behavior can be deduced by observing appearance (disappearance) of the peak in the images indicating the crack tip.  相似文献   

12.
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.  相似文献   

13.
McKie AD  Addison RC 《Ultrasonics》2002,40(10):1037-1046
State-of-the-art integrally stiffened composite materials, manufactured for use in the next generation of commercial and military aircraft, are increasingly being used for structural components such as wings and fuselages. However, the complexity of the manufacturing processes can produce small variations in the shape of integrally stiffened composite structures. Thus, a priori knowledge of the nominal part shape often does not provide sufficient accuracy to allow an automated conventional ultrasonic inspection. In contrast, automated inspections of integrally stiffened structures can be performed using laser-based ultrasound techniques since a priori knowledge of the nominal part shape is adequate to scan the laser beams over the structure. This paper addresses the issues associated with the extension of laser-based ultrasonics to inspections in remote and limited access areas, and describes the implementation of a fiber-based remote and limited access LBU inspection system based upon a Cassegrain scanning and optical collection system. The ability to quickly and directly manipulate flexible low mass optical fibers equipped with specialized endoscopic scanning optics make fiber systems an attractive method for the development of limited and remote access inspection systems. The Cassegrain optical system is described in detail and both numerical and experimental validation of the system operational characteristics are presented.  相似文献   

14.
杜劲松  高扬  毕欣  齐伟智  黄林  荣健 《物理学报》2015,64(3):34301-034301
微波热致超声成像技术通过向物体发射微波脉冲, 导致物体吸收电磁波温度迅速升高, 产生瞬时压力波, 从而激发产生超声波信号, 通过传感器对产生的超声波信号进行采集并成像, 最终还原了反映物体吸收电磁波能量特性的图像, 由于此方法兼具了微波成像的高对比性和超声成像的高分辨率特点, 理论上验证了热声成像技术对早期乳腺肿瘤检测的可行性. 本实验兼顾系统成像深度和分辨率, 采用S波段的微波脉冲信号源对物体进行辐射, 利用圆形扫描方式对待测物体进行检测, 同时为了更好的验证成像性能, 本实验同时使用了肿瘤仿体及实际生物组织进行成像实验. 通过实验分析, 验证了该系统对肿瘤仿体和生物组织检测的有效性, 以及系统的高分辨率和高对比度特性, 为早期乳房肿瘤检测提供了进一步的理论支撑.  相似文献   

15.
Tissue elasticity estimation is a growing area of ultrasound research. One proposed approach would apply acoustic radiation force to displace tissue and use ultrasonic motion tracking techniques to measure the resultant displacement. Such a technique might allow noninvasive imaging of tissue elastic properties. The potential of this method will be limited by the magnitude of displacements which can be generated at reasonable acoustic intensity levels. This paper presents methods for estimating the internal displacements induced in an elastic solid by acoustic radiation force. These methods predict displacements on the order of 400 microns in the human vitreous body, 0.008 micron in human breast, and 0.020 micron in human liver at an acoustic intensity of 1.0 W/cm2 (in water) and an operating frequency of 10 MHz. While the displacement generated in the vitreous should be readily detectable using ultrasonic methods, the displacements generated in the breast and liver will be much more difficult to detect. Methods are also developed for predicting the time dependent temperature increases associated with attenuated acoustic fields in the absence of perfusion. These results indicate promise for radiation force imaging in the vitreous, but potential difficulties in applying these techniques in other parts of the body.  相似文献   

16.
We report our experiences in the evaluation of ultrasonic cleaning processes of objects made with additive manufacturing techniques, specifically three-dimensional (3D) printers. These objects need to be cleaned of support material added during the printing process. The support material can be removed by dissolution in liquids with or without ultrasonic cavitation.  相似文献   

17.
用于测量流量和含沙量的超声波液位测定系统   总被引:3,自引:1,他引:2       下载免费PDF全文
本文介绍了实验室内用于测量流量和含沙量的超声波液位测定系统,此系统采用气介式方案,选用复合材料高频换能器作为超声波发射/接收器件,结构简单,静态测量时测量误差在150mm范围内不超过1mm,并可与微机进行远距离通讯。  相似文献   

18.
Hrovatin R  Petkovsek R  Diaci J  Mozina J 《Ultrasonics》2006,44(Z1):e1199-e1202
A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.  相似文献   

19.
The removal of nitroaromatics from polluted water is difficult due to their high stability to conventional treatment methods. This paper presents a method for the destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene in aqueous solutions. The compounds are shown to be stable to reaction with ozone, even under ultrasonic activation. The use of ultrasound enhances the rate of electrochemical reduction but the overall rate of reaction is still slow. However, the simultaneous application of ultrasound and ozonation to the electrochemical reaction allows virtually complete destruction of the compounds in short times. The effect is attributed to the ultrasonic enhancement of the electrochemical process giving intermediates that are susceptible to ozone oxidation. While further analytical work is needed to deduce the exact contributions of the various possible degradation mechanisms, the work demonstrates the synergies that can be gained by using combined techniques for the destruction of these difficult compounds.  相似文献   

20.
Horseshoe bats emit their ultrasonic biosonar pulses through nostrils surrounded by intricately shaped protuberances (noseleaves). While these noseleaves have been hypothesized to affect the sonar beam, their physical function has never been analyzed. Using numerical methods, we show that conspicuous furrows in the noseleaf act as resonance cavities shaping the sonar beam. This demonstrates that (a) animals can use resonances in external, half-open cavities to direct sound emissions, (b) structural detail in the faces of bats can have acoustic effects even if it is not adjacent to the emission sites, and (c) specializations in the biosonar system of horseshoe bats allow for differential processing of subbands of the pulse in the acoustic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号