首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
The synthesis, spectroscopic characterization and surface-enhanced spectroscopy of a new electro active organic material bis (benzimidazo) thioperylene (Monothio BZP) are reported. Langmuir monolayers of Monothio BZP were successfully formed on water subphase and characterized by the pi-A surface-pressure area isotherm. Langmuir-Blodgett (LB) monomolecular layers of Monothio BZP were fabricated onto glass substrates and onto silver island films for surface-enhanced spectroscopic studies. The results of surface-enhanced resonance Raman scattering (SERRS), SERRS imaging and surface-enhanced fluorescence (SEF) studies for Monothio BZP LB monolayers are reported. Raman imaging (global imaging and point-by-point mapping) of the SERRS signal for a single monomolecular layer on silver islands were obtained using the 514.5 nm laser line. The SERRS imaging permits a visualization of the variation of the SERRS intensity across of the rough metal surface. The SEF was recorded for the excimer emission of aggregates in the LB film. The distance dependence and the enhancement factor of SEF were determined using fatty acid spacing layers. A temperature dependence study of the LB monolayer SERRS and SEF spectra was carried out between -190 degrees and + 200 degrees C confirming the thermal stability of the LB monolayer on silver. The specificity and the sensitivity of SERRS signal on metal island films was probed using mixed LB films with 0.01% molecular ratio of Monothio BZP in Arachidic Acid (AA). The micro-Raman SERRS spectra from ca. 10(-3) attomole of the dye were recorded.  相似文献   

2.
The spectroscopic properties and surface-enhanced spectra of Langmuir-Blodgett (LB) films of methacrylic homopolymer (HPDR13) are presented. It is shown that LB film displays strong fluorescence attributed to the spatial restrictions imposed by its structure. The emission is observed in conjunction with photoisomerization, a process clearly demonstrated by the formation of surface-relief gratings in the LB film [C.R. Mendon?a et al., Macromolecules 32 (1999) 1493]. Surface-enhanced Raman scattering (SERS), Surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF) were observed for LB films of HPDR13 deposited onto silver island films. SERS measurements were also carried out on a sample fabricated with one monolayer LB film deposited onto silver islands followed by one overlayer of silver (LB sandwiched between two layers of silver islands). The polymer interacts very weakly with the metal surface (physisorption), and the enhancement effect is determined by the local electric field enhancement. The strong SERS and SERRS signals were suitable for micro-Raman imaging. Line, area mapping and global images of the LB monolayer on silver island are reported. The transfer ratio in the fabrication of the LB suggests a homogeneous coating of the silver islands, thereby the chemical images show the variation of the SERS intensity due to surface enhancement.  相似文献   

3.
酞菁化合物LB单分子膜的SERRS   总被引:4,自引:0,他引:4  
酞菁类化合物具有优良的光电特性,选择适当的取代侧链可得到稳定的LB成膜材料,可望在微电子器件等方面获得重要的应用.本工作观测了四-4-(2,4-二特戊基苯氧基)酞菁铜(CuPc(Dt-PP)_4)在银岛膜上的LB单分子层的表面增强共振拉曼散射(SERRS)光谱。比较其固体粉末的共振拉曼散射(RRS)光谱,讨论了酞菁铜分子大环在载片表面的取向及其可能的原因。1 实验CuPc(Dt-PP)_4样品由陈文启等合成,经元素分析、IR、NMR、色谱等研究确认其结构如图1所示.银岛膜用真空蒸镀法制备在玻璃载片上。用同时蒸镀在铜网上的银膜的透射电  相似文献   

4.
We have observed simultaneously temporal fluctuation of surface-enhanced resonance Raman scattering (SERRS) and its background-light emission from single Ag nanoaggregates that were adsorbed with metal-free tetraphenylporphine (H(2)TPP) molecules. We found that temporally stable SERRS spectra showed clearly a SERRS band that is attributed to a stretching mode of a chemical bond between a carbon atom and a non-hydrogenated nitrogen atom (C(alpha)-N). This stretching mode was not observed in regular resonance Raman spectra which are free from surface enhancement. On the other hand, we also found that temporally unstable SERRS spectra did not clearly show a C(alpha)-N stretching mode in SERRS bands. Furthermore, temporally stable SERRS spectra were accompanied by temporally stable background-light emission. Kobayashi et al. [J. Phys. Chem. 1985, 89, 5174] reported that formation of an Ag-N bond between surface Ag atoms and non-hydrogenated N atoms in a pyrrole ring enhances the intensity of a C(alpha)-N stretching mode. Thus, the observed relationship between clear appearance of a C(alpha)-N stretching mode and temporal stability of SERRS plus background-light emission strongly suggests that formation of a stable Ag-N bond suppresses fluctuation of both SERRS and background-light emission. Furthermore, the observed relationship implies that chemical contribution to SERRS is stabilization of H(2)TPP molecules that are adsorbed on SERRS-active sites by formation of Ag-N bonds. Additionally, we attributed background-light emission to luminescence of complexes between H(2)TPP molecules and surface Ag atoms considering possible formation of Ag-N bonds, synchronized SERRS intensity with background-light emission intensity, blue-shifted background-light emission maxima from normal fluorescence maxima, and previous reports related to electronic structures of H(2)TPP molecules on Ag surfaces.  相似文献   

5.
In this paper, the chemical enhancement of surface-enhanced resonance Raman scattering (SERRS) of pyrazine adsorbed on Ag nanoparticles through charge transfer was experimentally and theoretically investigated. Based on the calculations by density functional theory (DFT) and time-dependent DFT (TD-DFT), we theoretically analyzed the absorption spectra and SERS spectrum of the S-complex of pyrazine–Ag20. The charge transfer in the process of resonant electronic transitions between adsorbed molecule and metal cluster can be visualized by the method of charge difference density. It is a direct evidence for the chemical enhancement mechanism of SERRS of pyrazine molecule adsorbed on Ag nanoparticle via charge transfer between molecule and metal. Additionally, the intracluster charge redistribution was also considered as an evidence for the electromagnetic enhancement. By comparing the experimental and theoretical results, it was demonstrated that the SERRS of the pyrazine molecule absorbed on silver clusters in different incident wavelength regions is dominated by different enhancement mechanisms via the chemical and electromagnetic enhancements.  相似文献   

6.
This communication presents a new pathway for the more precise quantification of surface-enhanced Raman scattering (SERS) enhancement factor via deducing resonance Raman scattering (RRS) effect from surface-enhanced resonance Raman scattering (SERRS). To achieve this, a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) is formed on plasmon inactive glassy carbon (GC) and plasmon active GC/AuNP surface. The surfaces are subsequently used as common probes for electrochemical and Raman (RRS and SERRS) studies. The most crucial parameters required for the quantification of SERS substrate enhancement factor (SSEF) such as real surface area of GC/AuNPs substarte and the number of 4α-CoIITAPc molecules contributing to RRS (on GC) and SERRS (on GC/AuNPs) are precisely estimated by cyclic voltammetry experiments. The present approach of SSEF quantification can be applied to varieties of surfaces by choosing an appropriate laser line and probe molecule for each surface.  相似文献   

7.
Surface-enhanced Raman scattering(SERS) of the Rhodamine 123 (Rh 123) molecule on ion-induced silver colloids has been studied. A time-dependent study of the SER spectra at a particular pH confirms charge transfer interaction between the probe molecule and the metal. The SER spectra of Rh 123 in Ag sol is compared with that of the molecules organized in a monolayer on silver island films by the Langmuir-Blodgett (LB) technique. The origin of high SERS activity of Rh 123 molecules in a monolayer on a silver island film is shown to be due to physisorption whereas in the ion-induced colloidal SERS both physisorption and chemisorption machanisms are involved. From these results, the contribution of charge transfer interaction to SERS in Ag sol has been estimated. In monolayer SERS, all the in-plane and out-of-plane (of xanthene ring) modes are more or less equally enhanced. This indicates that the xanthene plane of Rh 123 molecule organized in a LB film is oriented neither flat nor perpendicular to the silver island surface but is tilted. Copyright 2001 Academic Press.  相似文献   

8.
We investigated the optical properties of isolated single aggregates of Ag nanoparticles (Ag nanoaggregates) on which rhodamine 6G molecules were adsorbed to reveal experimentally a correlation among plasmon resonance Rayleigh scattering, surface-enhanced resonance Raman scattering (SERRS), and its background light emission. From the lack of excitation-laser energy dependence of background emission maxima we concluded that the background emission is luminescence, not Raman scattering. The polarization dependence of both SERRS and background emission was the same as that of the lowest-energy plasmon resonance maxima, which is associated with a longitudinal plasmon. From the common polarization dependence, we identified that the lowest-energy plasmon is coupled with both SERRS and background emission. In addition, we revealed that the lowest-energy plasmon with a higher quality factor (Q factor) yields larger SERRS and background emission intensity. Also, we identified that the Q factor dependence of the SERRS intensity was similar to that of the background emission intensity. This similarity directly supported us to demonstrate an enhancement of both SERRS and background emission by coupling with a common plasmon radiative mode.  相似文献   

9.
A four step Ag foil laser ablation-Ag nanoparticle fragmentation procedure in ultrapure water was carried out both under argon and in air. Pulses of a high power Nd/YAG laser were used for laser ablation (1064 nm) and for the three step Ag hydrosol treatment in the absence of Ag foil in the sequence 1064-532-1064 nm. Transmission electron microscopy (TEM) and surface plasmon (SP) extinction spectra provide evidence of Ag nanoparticle fragmentation in the second and third step of the procedure carried out under argon. While polydispersity of Ag hydrosol increases in the second step, both the polydispersity and the mean size of the nanoparticles are reduced in the third step. Qualitative and quantitative surface-enhanced Raman scattering (SERS)/surface-enhanced resonance Raman scattering (SERRS) spectral probing of systems with Ag hydrosols and the selected adsorbates at 514.5 nm excitation shows that Ag hydrosols obtained in the second step of the preparation procedure carried out in air are the most suitable substrates for SERS/SERRS experiments performed at this excitation wavelength.  相似文献   

10.
The direct electron transfer reaction of fructose dehydrogenase (FDH) from Gluconobacter sp. on alkanethiol-modified silver nanoparticles (AgNPs) was examined using cyclic voltammetry and surface-enhanced resonance Raman scattering (SERRS). Using cyclic voltammetry, catalytic oxidation currents (based on the direct electron transfer reaction of FDH) were observed from a potential of approximately −100 mV (vs. Ag/AgCl, 3 M NaCl) in the presence of d-fructose, without a mediator. A comparison of the SERRS spectra and the resonance Raman spectra of FDH in solution indicated that the heme c site retained its six-coordinated low-spin heme after immobilization. Moreover, SERRS also demonstrated that the heme c of the adsorbed FDH was the electron transfer site within the enzyme.  相似文献   

11.
We demonstrate in this work that 2-μm-sized Ag (μAg) powders can be used as a core material for constructing biomolecular sensing/recognition units operating via surface-enhanced resonance Raman scattering (SERRS). This is possible because μAg powders are very efficient substrates for both the diffuse reflectance IR and the surface-enhanced Raman scattering–SERRS spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces. Besides, the agglomeration of μAg particles in a buffer solution can be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In this particular study, we used rhodamine B isothiocyanate (RhBITC) as a SERRS marker molecule, and μAg powders adsorbed consecutively with RhBITC and PAH–PAA bilayers were finally derivatized with biotinylated poly(l-lysine). On the basis of the nature of the SERRS peaks of RhBITC, those μAg powders were confirmed to selectively recognize streptavidin molecules down to concentrations of 10−10 g mL−1. Since a number of different molecules can be used as SERS–SERRS marker molecules, the present method proves to be an invaluable tool for multiplex biomolecular sensing/recognition via SERS and SERRS.  相似文献   

12.
Vibrational fundamentals, overtones and combination bands of the perylene chromophore, in the N-hexyl-3, 4:9,10-perylenetetracarboxylic diimide (HPTCNH) and other perylene tetracarboxylic derivatives, have been observed using surface enhanced resonance Raman scattering (SERRS) of Langmuir—Blodgett (LB) monolayers on Ag island films. Typical vibrational progressions due to the Franck—Condon (A-term) were seen. The results showed that the mechanism of the RRS effect was not altered by the metal surface, although the RRS signal was enhanced by four orders of magnitude. Polarization properties of the SERRS signal were studied for LB monolayers on a series of SERS active substrates. A frequency dependence of the depolarization ratios was observed.  相似文献   

13.
A study of sodium copper chlorophyllin adsorbed on silver colloids (CuChl/Ag) is conducted using surface-enhanced resonance Raman scattering (SERRS) and visible extinction spectroscopy to examine how the system changes as a function of pH. Initially at basic pH, SERRS signal is not detected even though CuChl is adsorbed onto the silver surface and deprotonated. Upon decreasing the solution pH slightly, colloidal aggregation is induced, evidenced by the broadening of the visible extinction spectra. The larger aggregates possess a surface plasmon that is in resonance with the laser excitation frequency (633-nm) and SERRS signal is detected. As the acid protonates CuChl, the overall negatively-charged surface approaches neutrality which induces more aggregation. Complete protonation of CuChl by pH 4.6 results in colloidal precipitation. However, when aggregation is halted about pH 5, adding NaOH(aq) to the system maintains the extent of aggregation and an intense SERRS signal is detected at basic pH.  相似文献   

14.
In this work, the fabrication, characterization, and application of avidin/Ag nanoparticle layer-by-layer (LbL) films as chemically selective substrates for surface-enhanced resonance Raman scattering (SERRS) is demonstrated. The biospecific interaction between avidin and the small molecule biotin, one of the strongest known to exist in nature, is exploited to preferentially capture biotinylated species from solution. This highly favored adsorption is shown to yield SERRS concentration enhancements and improved detection sensitivities of ca. 102 for commercially available and in situ prepared biotinylated species over their nontagged counterparts.  相似文献   

15.
A new citrate-reduced silver hydrosol coated with omega-mercaptoalkanoic acids (mercaptopropionic and mercaptoundecanoic acids) self-assembled monolayers was prepared and characterized with surface-enhanced Raman spectroscopy. The structure and the quality of the coating monolayers are discussed and compared to similar coated and uncoated silver hydrosols previously developed. As an application, the new hydrosol was used as a biocompatible and efficient metal substrate for a surface-enhanced resonance Raman scattering (SERRS) study of cytochrome c. The high-quality SERRS spectra reported of cytochrome c (obtained using only 1 microL of a micromolar cytochrome solution) are discussed and compared with data available from literature studies.  相似文献   

16.
Langmuir—Blodgett (LB) and evaporated thin solid films of the yytrium bisphthalocyanine complex (YPc2) have been prepared on various substrates. Cyclic voltammograms of films are discussed and the electrochromic effect on LB films is reported. A detailed spectroscopic characterization of the YPc2 material is given using resonance Raman scattering (RRS), surface-enhanced resonance Raman scattering (SERRS), transmission and reflection absorption FT-IR spectroscopy and UV—vis spectra. The spectroscopic characterization of the chemical and electrochemical oxidations products of YPc2 films and solutions was carried out by in situ UV—vis spectroscopy. Potential applications are discussed.  相似文献   

17.
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) are powerful optical scattering techniques used in such frontier areas of research as ultrasensitive chemical analysis, the characterization of nanostructures, and the detection of single molecules. However, measuring and, most importantly, interpreting SERS/SERRS spectra can be incredibly challenging. This is the result of modifications to the measured spectra that are due to of a variety of instabilities and contributions. These interferences and modifications arise from the nature of the enhancement itself, as well as the conditions used to attain SERS spectra. The present report is an attempt to collect in one place the analytical interferences that are most commonly found during the collection of SERS/SERRS spectra.  相似文献   

18.
Excitation profiles of SERS (surface-enhanced Raman scattering) and/or SERRS (surface-enhanced resonance Raman scattering) spectral bands of two forms of a Ag-bpy (bpy = 2,2'-bipyridine) surface complex and of [Ru(bpy)3]2+ on Ag nanoparticle (hydrosol) surfaces were determined from the spectra excited in the 458-600 nm region and are reported together with the FT-SERS spectra of the Ag-bpy surface complex and FT Raman spectra of [Ru(bpy)3] Cl2. Seven of the observed 11 fundamentals as well as their first overtones and combination bands are selectively enhanced in SERS of the Ag-bpy surface complex formed in the Ag colloid/HCl/bpy system. The profiles of these bands show a common maximum at approximately 540 nm. The selectively enhanced bands of the Ag-bpy surface complex have nearly the same wavenumbers as those enhanced in the SERRS and resonance Raman spectra of [Ru(bpy)3]2+ upon excitation close to the 453 nm maximum of its MLCT absorption band. Moreover, the intensity patterns of the bpy vibrations of the two species match both in resonance (541 nm excitation for Ag-bpy, 458 nm for [Ru(bpy)3]2+) and in off-resonance (458 and 1064 nm for Ag-bpy, 1064 nm for [Ru(bpy)3]2+). The distinct band shapes of the excitation profiles of the selectively enhanced vibrational modes of the Ag-bpy surface complex, as well as the observation of overtones and combination bands in the SERS spectra upon excitation into this "band", are interpreted in terms of a charge-transfer resonance contribution to the overall SERS enhancement. In view of the near-coincidence of the vibrational modes coupled to the resonant electronic transition of Ag-bpy with those coupled to the MLCT transition of [Ru(bpy)3]2+, the resonant electronic transition is tentatively assigned to a Ag metal to bpy (pi*) CT transition.  相似文献   

19.
Surface-enhanced resonance Raman scattering (SERRS) spectra of various rhodamine dyes, of pyronine G and thiopyronine adsorbed on isolated silver clusters were recorded at the ensemble level and at the single-molecule level with a high-resolution confocal laser microscope equipped with a spectrograph and a CCD-detector. Comparing single-molecule spectra with ensemble spectra, various inhomogeneous spectral features, such as line splitting, spectral wandering, spectral diffusion and abrupt spectral jumps between different metastable spectral states, are revealed positions and the relative intensities of the vibronic bands. Resonance enhancement is investigated with respect to single-molecule surface-enhanced Raman scattering (SERS) spectroscopy and is found to be responsible for approximately three orders of magnitude in sensitivity. A significant influence of the substituents on the single-molecule SERRS sensitivity is found, showing that various chemical effects are responsible for surface enhancement in addition to the electromagnetic enhancement effect.  相似文献   

20.
Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号