共查询到20条相似文献,搜索用时 0 毫秒
1.
SrO-borovanadate glasses with nominal composition (V2O5)0.5(SrO)0.5−y(B2O3)y, 0.0≤y≤0.4 were prepared by a normal quench technique and investigated by direct current (DC) electrical conductivity, inductively coupled plasma (ICP) spectroscopy, infrared (IR) spectroscopy and X-ray powder diffraction (XRD) studies in an attempt to understand the nature of mechanism governing the DC electrical conductivity and the effect of addition of B2O3 on the structure and electrical properties of these glasses. XRD patterns confirm the amorphous nature of the present glasses and actual compositions of the glasses were determined by ICP spectroscopy. The temperature dependence of DC electrical conductivity of these glasses has been studied in terms of different hopping models. The IR results agree with previous investigations on similar glasses and it has been concluded that similar to SrO-vanadate glasses, metavandate chain-like structures of SrV2O6 and individual VO4 units also occur in SrO-borovanadate glasses. The SrV2O6 and VOn polyhedra predominate in the low B2O3-containing SrO-borovanadate glasses as B substitutes into the V sites of the various VOn polyhedra and only when the concentration of B2O3 exceeds the SrO content do BOn structures appear. This qualitative picture of three distinct structural groupings for Sr-vanadate and Sr-borovanadate glasses is consistent with the proposed glass structure on previous IR and extended X-ray absorption fine structure (EXAFS) studies on these types of glasses. The conductivity results were analyzed with reference to theoretical models existing in the literature and the analysis shows that the conductivity data are consistent with Mott's nearest neighbor hopping model. Analysis of the conductivity data shows that they are consistent with Mott's nearest neighbor hopping model. However, both Mott VRH and Greaves models are suitable to explain the data. Schnakenberg's generalized polaron hopping model is also consistent with temperature dependence of activation energy. However, various model parameters such as density of states, hopping energy, etc. obtained from the best fits were not found to be in accordance with the prediction of the Mott model. 相似文献
2.
Junfeng Wang Di Yin Zhengyou Liu Decheng Tian Yuheng Zhang 《Solid State Communications》2004,132(10):653-656
The thermoelectric power (TEP) of the quasi-one-dimensional charge-density-wave (CDW) conductors rubidium blue bronze Rb0.3MoO3 and its alloy Rb0.15K0.15MoO3 were measured in the temperature range 80-280 K. The result showed a sign change from a small positive value to a great negative value where the Peierls transition temperatures (Tp) are 183 and 180 K for Rb0.3MoO3 and Rb0.15K0.15MoO3, respectively. Above Tp, the TEP for both samples can be described with the empirical relation S=AT+B; while below Tp, the TEP fits well the relation S=AT+B/T based on the experimental data. The Fermi energies εF for Rb0.3MoO3 and Rb0.15K0.15MoO3 are estimated to be 1.55 and 0.53 eV, respectively. 相似文献
3.
Ying Zhang 《Solid State Communications》2007,141(7):407-411
A novel inorganic solid electrolyte with a layered framework structure stable up to 1043 K, Na14.5[Al(PO4)2F2]2.5[Ti(PO4)2F2]0.5 (NATP), has been hydrothermally prepared and characterized by single-crystal and powder X-ray diffraction techniques, X-ray fluorescence (XRF) analysis, IR spectroscopic measurement, thermogravimetric and differential thermal analysis (TGA and DTA). NATP crystallizes in the acentric hexagonal space group P3 with a=10.448(2), b=10.448(2), , Z=1, containing a large number of Na+ cations in the interlamellar space and the cavities of its framework. There are six different crystallographic Na+ cationic sites, in which 8% Na(5) and 12% Na(6) sites are vacant. Electrical conductivity measurements show that Na+ cations exhibit a high mobility with two domains for the electrical conductivity versus temperature. 相似文献
4.
The effects of partial substitution of Mn for Co on the thermoelectric properties of Ca3MnxCo4−xO9 (x=0, 0.03, 0.9), prepared by sol-gel process, were investigated at the temperatures from 380 K down to 5 K. The results indicate that the substitution of Mn for Co results in increase in thermopower at temperatures >∼80 K, and substantial (23-31% at 300 K) decrease in lattice thermal conductivity in the whole temperature range investigated. The temperature behavior of ZT suggests that Ca3MnxCo4−xO9 with light Mn substitution would be a promising candidate for high-temperature thermoelectric applications. 相似文献
5.
The thermoelectric properties of Bi intercalated compounds BixTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Bi intercalation into TiS2 leads to substantial decrease of its electrical resistivity (one order low for x=0.05 and two orders low for x=0.15, 0.25 at 300 K) and lattice thermal conductivity (22, 115 and 158% low at 300 K for x=0.05, 0.15 and 0.25, respectively). Specially, the figure of merit, ZT, of lightly intercalated compound Bi0.05TiS2 has been improved at all temperatures investigated, and specifically reaches 0.03 at 300 K, which is about twice as large as that of TiS2. 相似文献
6.
Measurements of electrical resistivity are presented for polycrystalline alloys in the CePt2(Si1−xSnx)2 system. Results of X-ray diffraction indicate that the tetragonal region of the CePt2(Si1−xSnx)2 alloy system that is amenable for study only extends up to x=0.3. The resistivity maximum characteristic of a Kondo lattice is observed at a temperature Tmax=63 K for the parent compound CePt2Si2 and shifts to lower temperatures with increase in Sn content. The compressible Kondo lattice model is applied to describe the results of Tmax in terms of the on-site Kondo exchange interaction J and the electron density of states at the Fermi level N(EF). A value of |JN(EF)|=0.060±0.009 for the parent compound is obtained from the experimental results. 相似文献
7.
Doubly substituted polycrystalline compound bulk samples of BaxAgyCa2.8Co4O9 were prepared via citrate acid sol-gel method followed by spark plasma sintering. The phase composition, orientation, texture and high temperature electrical properties were systematically investigated. The results showed that the orientation and the texture could be modified by altering ratio of Ba to Ag. The resistivity and the Seebeck coefficient of substituted samples were decreased by decreasing Ba/Ag ratio except for that of Ba0.1Ag0.1Ca2.8Co4O9 sample with lowest electrical resistivity (7.2 mΩ cm at 973 K), moderately high Seebeck coefficient (172 μV/K at 973 K) and improved power factor (0.42 mW/mK2 at 973 K). 相似文献
8.
Variable angle spectroscopic ellipsometry has been applied to characterize the optical constants of bulk Cu(In0.7Ga0.3)5Se8 and Cu(In0.4Ga0.6)5Se8 crystals grown by the Bridgman method. The spectra were measured at room temperature over the energy range 0.8-4.4 eV. Adachi’s model was used to calculate the dielectric functions as well as the spectral dependence of complex refractive index, absorption coefficient, and normal-incidence reflectivity. The calculated data are in good agreement with the experimental ones over the entire range of photon energies. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A, and E1B interband transitions, have been determined using the simulated annealing algorithm. 相似文献
9.
T. Thonhauser 《Solid State Communications》2004,129(4):249-253
We investigated the influence of negative pressure on the electrical conductivity, the Seebeck coefficient, and the power factor of Sb2Te3. We performed first-principles calculations with the linearized-augmented plane-wave method considering negative hydrostatic pressure in the range from zero to −2 GPa and doping for electrons and holes up to 1020 cm−3. Our results predict a significant increase of the Seebeck coefficient and the power factor under negative pressure for certain doping concentrations. 相似文献
10.
Z. Kletowski 《Solid State Communications》2006,137(11):634-636
Results of the thermoelectric power (TEP) measurements done on monocrystalline samples of RESn3 compounds (RE=La, Pr, Nd, and Gd) are presented for the temperature range of 5.5-300 K. It was found that the TEP is positive and weakly temperature dependent at temperatures T>100 K. For T<100 K pronounced anomalies have been observed for the PrSn3 and the NdSn3 compounds in the vicinity of 10 K.We argue that the Kondo and crystal field effects cause these anomalies. A shape of the TEP anomaly found for PrSn3 resembles very much that observed in the electrical resistivity. 相似文献
11.
C.Y. Zhan 《Applied Surface Science》2007,253(18):7478-7482
Ge1−xCx films deposited by using a medium frequency magnetron sputtering technique (MFMST) were analyzed with X-ray photoelectron and Raman spectroscopy. The deposited Ge1−xCx films consist of C, Ge, GeC and GeOy. The GeC content in the Ge1−xCx films linearly decreases, and the C content linearly increases with increasing deposition temperature from 150 to 350 °C. The GeC content decreases from 11.6% at a substrate bias of 250 V to a lowest value of 9.6% at 350 V, then increases again to 10.4% at 450 V. While the C content increases from 49.0% at the bias of 250 V to a largest value of 58.0% at 350 V and then maintains this level at 450 V. It is found that selecting a bias parameter seems more effective than deposition temperature if we want to obtain a higher content of GeC in the deposited films. In addition, a new method is presented in this paper to estimate the changes of GeC content in the Ge1−xCx films by observing the shifts of Ge-Ge LO phonon peak in Raman spectra for the Ge1−xCx films. The related mechanism is also discussed in this paper. 相似文献
12.
We have prepared polycrystalline Ca3−xEuxCo4O9+δ (x=0, 0.15, 0.3 and 0.45) samples using a sol-gel process followed by SPS sintering and investigated the Eu substitution effects on their high-temperature thermoelectric properties. With the Eu substitution, both the electrical resistivity and thermopower increase monotonously. This could be attributed to the decrease of hole concentrations by substitution of trivalent Eu3+ for divalent Ca2+. The Eu substituted samples (x=0.15, x=0.3) have lower thermal conductivity than Ca3Co4O9+δ due to their lower electronic and lattice thermal conductivity. The dimensionless figure of merit ZT reaches 0.3 at 1000 K for the sample of Ca2.7Eu0.3Co4O9+δ. 相似文献
13.
The magnetic susceptibility of hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses
I. Kokanovi? 《Journal of magnetism and magnetic materials》2009,321(13):1985-1989
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K. 相似文献
14.
Temperature and frequency dependence of dielectric constant (ε′) and dielectric loss (ε″) are studied in glassy Se70Te30 and Se70Te28Zn2. The measurements have been made in the frequency range (8-500 kHz) and in the temperature range 300 to 350 K. An analysis of the dielectric loss data shows that the Guintini's theory of dielectric dispersion based on two-electron hopping over a potential barrier is applicable in the present case.No dielectric loss peak is observed in glassy Se70Te30. However, such loss peaks exist in the glassy Se70Te28Zn2 in the above frequency and temperature range. The Cole-Cole diagrams have been used to determine some parameters such as the distribution parameter (α), the macroscopic relaxation time (τ0), the molecular relaxation time (τ) and the Gibb's free energy for relaxation (ΔF). 相似文献
15.
The DC and AC conductivities of samples from the system (As2S3)100−x(AsSe0.5Te0.5I)x, where x=0, 5, 10, 15, 20, 25, 30, 35, 50, 70 and 90 mol%, were measured as a function of temperature. Besides, the AC conductivities of the samples with x=10 and 30 were measured as a function of frequency from room temperature to the glass transition temperature. The DC conductivity dependence on temperature is of the Arrhenius type, whereas the value of the pre-exponential factor suggests the electrical conduction by localized states in the band tails and by localized states near the Fermi level. The small values of the conduction activation energy (10−2-10−1 eV) obtained at higher frequencies suggest that the conduction in these materials is due to hopping of charge carriers between close defect states near the Fermi level. 相似文献
16.
The electrical property of a KTiOPO4 single crystal was studied by means of a dielectric spectroscopy method in the temperature range from −100 to 100 °C. Dielectric dispersion began at a temperature, TS=−80 °C. It is believed that this dielectric dispersion is related to the ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energy concerned with hopping conduction is Ea∼0.20 eV above TS. TS=−80 °C can be the minimum temperature for the hopping K+ ion. 相似文献
17.
Thermally Activated Photoconduction and Alternating-Current Conduction in Se75Ge20Ag5 Chalcogenide Glass: Investigation of Meyer--Neldel Rule 下载免费PDF全文
We report on the observation of Meyer-Neldel rule in glassy Se75Ge20Ag5 alloy where AE is varied by two different methods. In the first approach, the intensity of light varies while measuring the photoconductivity in amorphous thin films of Se75Ge20Ag5 instead of changing composition of the glassy system. In the second approach, the variation of ac conductivity with temperature is found to be exponential and the activation energy is found to vary with frequency. 相似文献
18.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K. 相似文献
19.
Single crystals of YbRhIn5 and YbIrIn5 have been grown by flux method. The crystals were characterized by means of X-ray diffraction, magnetic and electrical transport measurements. Both compounds were found to be weak diamagnets with metallic character of the electrical conductivity and the Seebeck coefficient. 相似文献
20.
In order to investigate the pressure effect on the magnetism in the layered cobaltites, positive muon spin rotation and relaxation μ+SR experiments have been carried out up to 1.3 GPa using c-aligned polycrystalline samples of [Ca2CoO3]0.62[CoO2] and [Ca2Co4/3Cu2/3O4]0.62[CoO2]. A transverse field μ+SR experiment indicates that the transition temperature to an incommensurate spin density wave IC-SDW state is independent of hydrostatic pressure up to 1.3 GPa for the both compounds. Furthermore, there are no changes in the spontanious muon precession frequency in zero field at 5 K even under 1.3 GPa. These results strongly suggest that the IC-SDW exists not in the rocksalt-type block ([Ca2CoO3] and/or [Ca2Co4/3Cu2/3O4]) but in the CoO2 plane. 相似文献