首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 133Cs 1/2→−1/2 spin-lattice relaxation rate, , and the spin-spin relaxation rate, , for a Cs2CaCl4·2H2O single crystal have been measured in function of temperature. The dominant relaxation mechanism of this crystal over the whole temperature range investigated here proceeds via quadrupole interaction. The changes in the 133Cs spin-lattice relaxation rate near 325 K (=Tc1) and 360 K (=Tc2) correspond to phase transitions in the crystal. The change in the spin-lattice relaxation rate at Tc1 is small because the crystal lattice does not change very much during this phase transition. The change in near Tc2 is due to the critical slowing down of the soft mode that typically occurs in structural phase transitions. The temperature dependence of the spin-lattice relaxation rate for this crystal has maximum values at about 240 K, which is attributable to the effect of molecular motion as described by Bloembergen-Purcell-Pound theory. The phase transition temperatures Tc1 and Tc2 obtained from the temperature dependence of the relaxation rate is also clear from data obtained using differential scanning calorimetry. Therefore, we know that previously unreported phase transitions occur at 325 and 360 K.  相似文献   

2.
The 133Cs spin-lattice relaxation time in a CsHSO4 single crystal was measured in the temperature range from 300 to 450 K. The changes in the 133Cs spin-lattice relaxation rate near Tc1 (=333 K) and Tc2 (=415 K) correspond to phase transitions in the crystal. The small change in the spin-lattice relaxation time across the phase transition from II to III is due to the fact that during the phase transition, the crystal lattice does not change very much; thus, this transition is a second-order phase transition. The abrupt change of T1 around Tc2 (II-I phase transition) is due to a structural phase transition from the monoclinic to the tetragonal phase; this transition is a first-order transition. The temperature dependences of the relaxation rates in phases I, II, and III are indicative of a single-phonon process and can be represented by T1−1=A+BT. In addition, from the stress-strain hysteresis loop and the 133Cs nuclear magnetic resonance, we know that the CsHSO4 crystal has ferroelastic characteristics in phases II and III.  相似文献   

3.
The proton NMR line width and spin-lattice relaxation times for LiNH4SO4 single crystal were studied at low temperature range of 6 and 280 K. The changes in the proton relaxation behavior near the phase transition temperature indicates a change in the state of internal motion at the transition. The molecular motions obtained by the spin-lattice relaxation processes were found to be determined by molecular reorientation of the NH4 ions in phases III, IV, and V. We also confirmed that the phase transitions occur at 26 and 133 K.  相似文献   

4.
The proton spin-lattice relaxation rates in [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals grown using the slow evaporation method were investigated over the temperature range 120-400 K. It was found that the relaxation processes of 1H for all the [N(CH3)4]2BCl4 crystals can be described with single exponential functions. The changes in the 1H relaxation behavior in the neighborhood of the phase transition temperatures are used to detect changes in the state of internal motion. From the 1H spin-lattice relaxation rate measurements for [N(CH3)4]2BCl4 crystals, the activation energies were calculated for each phase. The large values of the activation energies indicate that the N(CH3)4 groups are significantly affected during the transitions. Although these [N(CH3)4]2BCl4 crystals all belong to the group of A2BX4-type crystals, their 1H spin-lattice relaxation rates have different temperature dependences and indicate the occurrence of different molecular motions within the crystals. We additionally show for the first time that the differences in 1H spin-lattice relaxation rates among the [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals arise from differences in the electron structures of the metal ions within the series.  相似文献   

5.
We have studied the organic superconductor (TMTSF)2PF6 using 1H nuclear magnetic resonance. The spin-lattice (T1) and the spin-spin relaxation time (T2) measurements manifested a divergence associated with a structural phase transition at 160 K.  相似文献   

6.
The spin-lattice relaxation rates of 1H and 39K nuclei in KHSeO4 crystals were studied in the temperature range 160-400 K. The spin-lattice relaxation recovery of 1H nucleus in this crystal can be represented with a single exponential function, and the relaxation T1−1 curve of 1H can be represented with the Bloembergen-Purcell-Pound (BPP) function. The relaxation process of 39K with dominant quadrupole relaxation can be described by a linear combination of two exponential functions. T1−1 for the 39K nucleus was found to have a very strong temperature dependence, T1−1=βT7. Rapid variations in relaxation rates are associated with critical fluctuations in the electronic spin system. The T7 temperature dependence of the Raman relaxation rate is shown here to be due to phonon-magnon coupling.  相似文献   

7.
CsZnCl3 single crystals were grown by the slow evaporation method, and the spin-lattice relaxation rates and resonance lines of the 133Cs nuclei in the resulting crystals were investigated using FT NMR spectrometry. The temperature dependence of the relaxation rate of the 133Cs nuclei in the CsZnCl3 crystals was found to be continuous near TC (=366 K), and was not affected by this phase transition. Our results for CsZnCl3 are compared with those obtained previously for other CsBCl3 (B=Mn, Cu, and Cd) perovskite crystals. The Cs relaxation time of CsCdCl3 is longer than that of CsMnCl3. The differences between the atomic weights of Mn, Cu, Zn, and Cd are responsible for the differences between the spin-lattice relaxation times of these single crystals. The influence of paramagnetic ions is also important in these crystals. The differences between the spin-lattice relaxation times of these crystals could also be due to differences between the electron structures of their metal ions, in particular the structures of the d electrons.  相似文献   

8.
Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.  相似文献   

9.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

10.
Crystal structure of the 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4], has been determined at 240 K by X-ray diffraction as monoclinic, space group, P21/n, Z=8. Differential scanning calorimetry and dilatometric studies indicate the presence of two reversible phase transitions of first order type, at 335/339 and 233/289 K (cooling/heating) with ΔS=0.68 and 2.2 J mol−1 K−1, respectively. Crystal dynamics is discussed on the basis of the temperature dependence of the 1H NMR spin-lattice relaxation time T1 and infrared spectroscopic studies. The low temperature phase transition at 233 K of an order-disorder type is interpreted in terms of a change in the motional state of the 4-methylpyridinium cations. The phase transition at 335 K, probably of a displacive type, is characterised by a complex mechanism involving the dynamics of both the cationic and anionic sublattice. The 1H NMR studies show that the low temperature phase III is characterised only by the dynamics of the CH3 groups.  相似文献   

11.
We investigated the temperature dependences of the line shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in (NH4)4LiH3(SO4)4 single crystals. On the basis of the data obtained, we were able to distinguish the “ammonium” and “hydrogen-bond” protons in the crystals. For both the ammonium and hydrogen-bond protons in (NH4)4LiH3(SO4)4, the curves of T1 and T2 versus temperature changed significantly near the ferroelastic and superionic phase transitions at TC (=232 K) and TS (=405 K), respectively. In particular, near TS, the 1H signal due to the hydrogen-bond protons abruptly narrowed and the T2 value for these protons abruptly increased, indicating that these protons play an important role in this superionic phase transition. The marked increase in the T2 of the hydrogen-bond protons above TS indicates that the breaking of O-H?O bonds and the formation of new H-bonds with HSO4- contribute significantly to the high-temperature conductivity of (NH4)4LiH3(SO4)4 crystals.  相似文献   

12.
Dielectric permittivities (ε′,ε″) have been measured as functions of temperature (140-535 K) and frequency (500 Hz-2.0 MHz) in a (001)-cut Pb(In1/2Nb1/2)0.7Ti0.3O3 (PINT30%) single crystal grown by the modified Bridgman method with Pb(Mg1/3Nb2/3)0.71Ti0.29O3 (PMNT29%) seed crystal. A diffused phase transition was observed in the temperature region of ∼430-460 K with strong frequency dispersion. Above the Burns temperature TB≅510 K, the dielectric permittivity was found to follow the Curie-Weiss behavior, ε′=C/(TTC), with parameters C=3.9×105 and TC=472 K. Below TB≅510 K, polar nanoclusters are considered to appear and are responsible for the diffused dielectric anomaly. Optical transmission, refractive indices, and the Cauchy equations were obtained as a function of wavelength at room temperature. The unpoled crystal shows almost no birefringence, indicating that the average structural symmetry is optically isotropic. The crystal exhibits a broad transparency in the wavelength range of ∼0.4-6.0 μm.  相似文献   

13.
We examine the ferroelectric-relaxor behavior of (Ba0.65Sr0.35)(Zr0.35Ti0.65)O3 (BSZT) ceramics in the temperature range from 80 to 380 K. A broad dielectric maximum, which shifts to higher temperature with increasing frequency, signifies the relaxor-type behavior of these ceramics. The value of the relaxation parameter γ∼2 estimated from the linear fit of the modified Curie-Weiss law, indicates the relaxor nature of the BSZT ceramics. The dielectric relaxation rate follows the Vogel-Fulcher relation with TVF=107 K, Ea=0.121 eV, and ν0=6.83×1014 Hz, further supports such relaxor nature. The slim P-E hysteresis loop and ‘butterfly’ shape dc bias field dependence of permittivity at T>Tm (Tm, the temperature of permittivity maximum) clearly signifies the occurrence of nanopolar clusters, which is the typical characteristic of ferroelectric relaxor. At 300 K and 10 kHz, the dielectric constant and loss tan δ are ∼1100 and 0.0015, respectively. The high tunability (∼25%) and figure of merit (∼130) at room temperature show that the BSZT ceramics could be a promising candidate for tunable capacitor applications.  相似文献   

14.
The crystal structure and transport properties of TiS3 whiskers in the plane of layers (ab) have been studied. Maxima of the logarithmic derivative of resistance, dln R/d(1/T), are observed at 17, 60 and 120 K both along and across the chains. Strong nonlinearity of the current–voltage characteristics has been revealed in both directions. Nonlinear conductivity along the chains is observed up to T=60 K, while in the transverse direction it is observed up to T=130 K. The results indicate possible phase transitions of electrons to collective states, probably, charge density waves.  相似文献   

15.
The molecular susceptibility and paramagnetic shift of [N(CH3)4]2CoCl4 single crystals were measured, and from these experimental results we obtained the transferred hyperfine interaction, Hhf, due to the transfer of spin density from Co2+ ions to [N(CH3)4]+ ions. The transferred hyperfine interaction can be expressed as a linear equation, with Hhf increasing with increasing temperature. The remarkable change in Hhf near Tc5 (=192 K) corresponds to a phase transition. The proton spin-lattice relaxation times of [N(CH3)4]2CoCl4 single crystals were also investigated, and it was found that the relaxation process can be described by a single exponential function. The variation of the relaxation time with temperature undergoes a remarkable change near Tc5, confirming the presence of a phase transition at that temperature. From the above results, we conclude that the increase in Hhf with increasing temperature is large enough to allow the transfer of spin density between Co2+ ions and the nuclear spins of the nonmagnetic [N(CH3)4]+ ions in the lattice, and thus the increase in the relaxation time with temperature is attributed to an increase in the transferred hyperfine field.  相似文献   

16.
The 7Li and 39K NMR relaxations in a LiKSO4 single crystal grown by the slow evaporation method were investigated by employing a pulse NMR spectrometer. From the experimental data, the quadrupole coupling constant and asymmetry parameter were determined at the temperatures of 180 and 300 K. The relaxation processes of 7Li and 39K were studied for the LiKSO4 crystal, and the relaxation times for the 7Li and 39K nuclei exhibit remarkable changes near Tc2 (=190 K). The activation energies for 7Li and 39K were determined in phases I and III. The large change in the activation energy at 190 K indicates that the Li and K ions are significantly affected during this transition. The correlation time of the 7Li calculated from the spin-lattice relaxation time and quadrupole parameters was larger than that of the 39K calculated using the same method. The reason for this is that the Li ion undergoes molecular motion as in the LiO4 groups.  相似文献   

17.
We report Sb-NMR/NQR measurements on a valence fluctuating compound CeIrSb, which is isostructural to the Kondo semiconductors CeRhSb and CeNiSn. The nuclear spin-lattice relaxation rate divided by temperature, 1/T1T has a maximum around 300 K and considerably decreases in proportion to T2 when cooling down, followed by a 1/T1Tconst. behavior below 20 K. These results indicate that CeIrSb has a V-shaped pseudogap with a residual density of states at the Fermi level. The size of pseudogap for CeIrSb is estimated to be about 350 K, which is one order of magnitude larger than the values of 28 K for CeRhSb and 14 K for CeNiSn. The larger size of energy gap in CeIrSb may be attributed to much stronger c-f hybridization than those for CeRhSb and CeNiSn.  相似文献   

18.
Phase transitions of tetra(isopropylammonium)decachlorotricadmate(II) [(CH3)2CHNH3]4Cd3Cl10 crystal have been studied by infrared, far infrared and Raman measurements in wide temperature range, between 11 K and 388 K. The temperature changes of wavenumber, center of gravity, width and intensity of the bands were analyzed to clarify cationic and anionic contributions to the phase transitions mechanism. The results of investigation showed earlier by differential scanning calorimetry (DSC), thermal expansion and dielectric measurements clearly confirmed the sequence of phase transitions at T1=353 K, T2=294 K and T3=260 K. The current results derived from DSC and infrared measurements revealed additional phase transition at T4=120 K.  相似文献   

19.
The half-width of exciton absorption band (n=1) of Cs3Bi2I9 layered ferroelastic crystals was studied carefully as function of temperature in the range from 5 to 300 K. For the first time, we have found a new physical effect: change of exciton-phonon interaction (from weak to strong) in the same sample as temperature increases. It was established that the temperature value T*=150 K may be considered as characteristic one, below which a crystal loses the nature of layered substance. The effect is explained using a model that takes into account the reconstruction of the crystal lattice from non-layered to layered one.  相似文献   

20.
The temperature evolution of the proton spin-lattice relaxation time T1 in p-terphenyl and in p-quaterphenyl around their order-disorder phase transition has been measured. In both cases pretransitional collective fluctuations destroy the high temperature Arrhenius behaviour of the relaxation rate corresponding to a single reorientational jump motion. The spin-lattice relaxation times present then a drastic decrease until the transition temperature (T0 = 193 K in p-terphenyl, T0 = 238 K in p-quaterphenyl). This decrease is associated to the critical slowing down of fluctuations. In the low temperature phase the ordering phenomena lead to a sharp drop of the spin-lattice relaxation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号