首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The all-electron contracted Gaussian basis set of double zeta valence quality plus polarization functions (DZP) for the atoms from Rb to Xe is presented. The Douglas–Kroll–Hess (DKH) basis set for fourth-row elements is also reported. The original DZP basis set has been recontracted, i.e. the values of the contraction coefficients were re-optimized using the relativistic DKH Hamiltonian. This extends earlier works on segmented contracted DZ basis set for atoms H-Kr. These sets along with ab initio methods were used to calculate ionization energies of some atoms and spectroscopic constants of a sample of molecules and, then, comparison with results obtained with other basis sets was made. It was shown that experimental and benchmark bond lengths and harmonic vibrational frequencies can be reproduced satisfactorily with DZP-DKZ.  相似文献   

2.
We investigated the electronic state of an (Am,U) mixed oxide with the fluorite structure using the all-electron full potential linear augmented plane wave method and compared it with those of Am2O3, AmO2, UO2, and La0.5U0.5O2. The valence of Am in the mixed oxide was close to that of Am2O3 and the valence of U in the mixed oxide was pentavalent. The electronic structure of AmO2 was different from that of Am2O3, particularly just above the Fermi level. In addition, the electronic states of Am and U in the mixed oxide were similar to those of trivalent Am and pentavalent U oxides. These electronic states reflected the high oxygen potential of AmO2 and the heightened oxygen potential resulting from the addition of Am to UO2 and also suggested the occurrence of charge transfer from Am to U in the solid solution process.  相似文献   

3.
We have employed a full-relativistic version of an all-electron full-potential linearized-augmented plane-wave method in the local density approximation to investigate the electronic structure of nanolaminate Zr2AlX (X=C and N). The Zr 4d electrons are treated as valence electrons. We have investigated the lattice parameters, bulk moduli, band structures, total and partial densities of states and charge densities. It is demonstrated that the strength and electrical transport properties in these materials are principally governed by the metallic planes.  相似文献   

4.
Our non-empirical pseudo-potential method is tested on the molecules ScH3, TiH3F, MnO4 -, Zn(CH3)2 and Pd(CO)4. The calculations are performed with the PSIBMOL algorithm, described in paper I (Molec. Phys., 1977, 33, 159) at the independent particle restricted Hartree-Fock level with minimal and double-zeta basis sets of Slater orbitals expanded in gaussian functions. The agreement between pseudo-potential and all-electron calculations for these molecules is as good as for non-transition element compounds as concerns valence molecular orbital energies and expectation values of various one-electron operators. The general conclusion of this series (papers I, II and III) is that our non-empirical pseudo-potential method can now be used as a routine tool to predict efficiently the ground-state valence electronic properties of molecules containing any atom of the Periodic Table as far as relativistic effects remain unimportant.  相似文献   

5.
《Solid State Communications》2002,121(9-10):461-465
We present a new all-electron, augmented-wave implementation of the GW approximation using eigenfunctions generated by a recent variant of the full-potential LMTO method. The dynamically screened Coulomb interaction W is expanded in a mixed basis set which consists of two contributions, local atom-centered functions confined to muffin-tin spheres, and plane waves with the overlap to the local functions projected out. The former can include any of the core states; thus the core and valence states can be treated on an equal footing. Systematic studies of semiconductors and insulators show that the GW fundamental bandgaps consistently fall low in comparison to experiment. Also the quasi-particle (QP) levels differ significantly from other, approximate methods, in particular those that approximate the core with a pseudopotential, or those that include valence states only.  相似文献   

6.
An investigation on the structural stabilities, electronic and optical properties of LiBeP under high pressure was conducted using the all-electron density functional theory within the local density approximation. Our results show that the sequence of the pressure induced phase transition of LiBeP is the Cu2Sb-type structure (P4/nmm), the MgSrSi-type structure (Pnma) and the LiGaGe-type structure (P63mc). The first transition (P4/nmm to Pnma) takes place at 2.95 GPa and the second (Pnma to P63mc) at 6.65 GPa. In the three phases, the bandgap is indirect and the valence band maximum is at the zone center. With increasing pressure LiBeP in the LiGaGe structure becomes a direct gap semiconductor at 19.75 GPa. The assignments of the structures in the optical spectra and the band structure transitions are discussed. The mean value of the optical dielectric constant for the Cu2Sb phase is smaller than that for the MgSrSi and the LiGaGe ones. This compound has a positive uniaxial anisotropy in the LiGaGe structure. The absorption coefficient along the z   direction, αzzαzz, for the MgSrSi structure is higher than that in the other two structures in the visible regime.  相似文献   

7.
孙博  张平 《中国物理 B》2008,17(4):1364-1370
The electronic structures and properties of PuO2 and Pu2O3 have been studied according to the first principles by using the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by choosing the values of U and exchange-correlation potential. Also, the oxidation reaction of Pu2O3, leading to the formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U it is possible to consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modelling of the redox process involving Pu-based materials.  相似文献   

8.
Potential curves for the four Hund's case (a) basis electronic states (2Σ, 2Πg, 2Πu, and 2Σ+) correlating with the I(2Pu) + I?(1Sg) dissociation limit have been calculated at the MRCISD level of theory using an all-electron double-zeta basis set augmented with an extensive set of polarization and diffuse functions complete through i angular momentum functions. Transition moments for the dipole allowed transitions between these states are determined as a function of internuclear separation. The four Hund's case (a) curves are used to determine the six Hund's case (c) potential curves which arise when spin-orbit coupling is considered. The rovibrational eigenvalues for each of these six states are determined numerically, and standard spectroscopic constants are determined by fitting the energy of these levels to a Duham series. The results are compared with available experimental and theoretical information.  相似文献   

9.
A contracted basis set of triple zeta (TZ) valence quality for the atoms from K to Kr was constructed from fully-optimized Gaussian basis sets generated in this work. Gaussian polarization functions (d, f, and g symmetries), which were optimized at the second-order Mφller–Plesset level, were added to the TZ set. This extends earlier work on segmented contracted TZ basis set for atoms H-Ar. This set along with the BP86 non-hybrid and B3LYP hybrid functionals were used to calculate geometric parameters, dissociation energy, harmonic vibrational frequency, and electric dipole moment of a sample of molecules and, then, comparison with results obtained with other basis sets and with experimental data reported in the literature is done. CCSD(T) atomic excitation energies and bond lengths, dissociation energies, and harmonic vibrational frequencies of some diatomics were also evaluated. Using density functional theory and gauge-including atomic orbitals, 57Fe and 77Se nuclear magnetic resonance chemical shifts in Fe(C5H5)2, H2Se, (CH3)SeH, CSe2, SeCO, H2CSe, and SeF6 were calculated. Comparison with theoretical and experimental values previously published in the literature was done. It is verified that in general these results give good agreement with experimental and benchmark values.  相似文献   

10.
High level ab initio, up to RCCSD(T), and B3LYP calculations were employed to calculate thermochemical properties for KOH and KOH+. Basis sets were of both all-electron and effective core potential (ECP) types: in both cases large, flexible valence basis sets were used, and the largest basis sets were of quintuple-zeta quality. Both KOH and KOH+ were found to be linear; in the latter case, the Renner-Teller effect is discussed. The results are close to convergence with regard to both basis sets and levels of theory. The most reliable quantities are: first AIE(KOH) = 7.38±0.02eV; D0(K- -OH) = 82 ± 1 kcal mol-1; D0(K+ …OH) = 11.4 ± 1 kcalmol-1; δHf(KOH,298K) = ?53 ± 1 kcalmol?1; and δHf(KOH+,298K) = 119 ± 1 kcalmol-1.  相似文献   

11.
We report preliminary results on the binding energy spectrum and molecular orbital momentum distributions of H2S as measured by binary (e,2e) spectroscopy at 400 eV. Extensive final ion state structure associated with ionization from the inner valence molecular orbital of H2S is observed. Three momentum distribution calculations for H2S using basis sets of varying complexity show a better fit than in H2O (J. Electron Spectrosc. 11 (1977) 205) for a given quality of basis set.  相似文献   

12.
An all-electron scalar relativistic calculation on AunH2S (n = 1-13) clusters has been performed by using density functional theory with the generalized gradient approximation at PW91 level. The small gold cluster would like to bond with sulfur in the same plane and the H2S molecule prefers to occupy the on-top and single fold coordination site in the cluster. The Aun structures and H2S molecule in all AunH2S clusters are only slightly perturbed and still maintain their structural integrity. After adsorption, the S-H, H-H bond-lengths and most Au-Au bond-lengths are elongated, only a few Au-Au bond-lengths far from H2S molecule are shortened. The reactivity enhancement of H2S molecule is obvious and the strong gold-sulfur bond is observed expectedly. The most favorable adsorption takes place in the case that the H2S molecule is adsorbed by an even-numbered Aun cluster and becomes AunH2S cluster with even number of valence electrons. It is believed that the strong scalar relativistic effect is favorable to H2S molecule adsorption onto small gold clusters and is also one of the important reasons for the strong gold-sulfur bond.  相似文献   

13.
《Molecular physics》2012,110(21-22):2751-2760
Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C2H2–Kr and C2H2–Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n–1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229?Å, and angles of 65.22° and 68.67° for C2H2–Kr and C2H2–Xe, respectively. The interaction energy of both complexes is estimated to be ?151.88 (1.817?kJ?mol?1) and ?182.76?cm?1 (2.186?kJ?mol?1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed.  相似文献   

14.
The electronic structure of Sr2Bi2O5 is calculated by the GGA approach. Both of the valence band maximum and the conduction band minimum are located at Γ-point. This means that Sr2Bi2O5 is a direct band-gap material. The wide energy-band dispersions near the valence band maximum and the conduction band minimum predict that holes and electrons generated by band gap excitation have a high mobility. The conduction band is composed of Bi 6p, Sr 4d and O 2p energy states. On the other hand, the valence band can be divided into two energy regions ranging from −9.5 to −7.9 eV (lower valence band) and from −4.13 to 0 eV (upper valence band). The former mainly consists of Bi 6s states hybridizing with O 2s and O 2p states, and the latter is mainly constructed from O 2p states strongly interacting with Bi 6s and Bi 6p states.  相似文献   

15.
Systematic valence changes in Pr1−xSrxMn1−yInyO3−δ upon cation substitution with Sr2+ and In3+ have been found using Mn K-edge and Pr L-edge X-ray absorption, and Mn LII,III and Pr MIV,V electron energy-loss spectroscopy. The average valence of the praseodymium ions is close to +3.0 and virtually constant over the sample set when the samples also contained manganese ions. Pr0.5Sr0.5InO3−δ showed a distinct increase in the praseodymium valence state. In contrast, the average valence of the manganese ions changed from the trivalent state to intermediate values between +3.0 and +4.0 and approached the tetravalent state depending on the level of substitution. The knowledge of the valence is required to understand the conduction mechanisms in the material due to the small polaron hopping (electronic conductivity) and motion of oxygen ions along the vacancies (ionic conductivity). Addition of strontium and indium led to the formation of oxygen vacancies. A previously assumed intermediate valence of praseodymium as causal factor for the higher oxygen catalytic activity cannot be confirmed with room temperature measurements.  相似文献   

16.
On the basis of density-functional theory (PW91) and an all-electron numerical basis set, 60 optimized structures of Fe3O3+ clusters were obtained through optimization calculation and frequency analysis of 216 initial structures. 28 different isomers were ultimately confirmed after analyzing and re-calculating. The binding energies, the energy gaps between the highest occupied molecular orbital and lowest unoccupied molecular orbital, and the total magnetic moments of all stable isomers are reported. Some discussion of the relationship between electronic properties and structures is also presented.  相似文献   

17.
王杰敏  冯恒强  孙金锋  施德恒 《中国物理 B》2012,21(2):23102-023102
The potential energy curves (PECs) of three low-lying electronic states (X1Σg+, w3Δu, and W1Δu)of P2 molecule are investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent basis set in the valence range. The PECs of the electronic states involved are modified by the Davidson correction and extrapolated to the complete basis set (CBS) limit. With these PECs, the spectroscopic parameters of the three electronic states are determined and compared in detail with the experimental data. The comparison shows that excellent agreement exists between the present results and the available experimental data. The complete vibrational states are computed for the w3Δu, and W1Δu electronic states when the rotational quantum number J equals zero and the vibrational level G(v), the inertial rotation constant Bv, and the centrifugal distortion constant Dv of the first 30 vibrational states are reported, which accord well with the experimental data. The present results show that the two-point extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.  相似文献   

18.
The valence band offset, ΔEV ,at the lattice-matched GaAs/AlAs(001) interface is derived from highly precise self- consistent all-electron local density band structure calculations of the (GaAs)n(AlAs)n(001) superlattices (with n ⩽ 3). Using the core levels as reference energies, we find that ΔEV = 0.50 ± 0.05 eV, in very good agreement with recent experimental results (ΔEV = 0.45 − 0.55 eV). The dependence of ΔEV on the superlattice thickness is studied and related to the interface charge redistribution which produces an interface dipole potential estimated to be ∼ 0.14 eV.  相似文献   

19.
Total and partial densities of states of constituent atoms of two tetragonal phases of Tl3PbCl5 (space groups P41212 and P41) have been calculated using the full potential linearized augmented plane wave (FP-LAPW) method and Korringa-Kohn-Rostoker method within coherent potential approximation (KKR-CPA). The results obtained reveal the similarity of occupations of the valence band and the conduction band in the both tetragonal phases of Tl3PbCl5. The FP-LAPW and KKR-CPA data indicate that the valence band of Tl3PbCl5 is dominated by contributions of the Cl 3p-like states, which contribute mainly to the top and the central portion of the valence band with also significant contributions throughout the whole valence-band region. Further, the bottom of the valence band of Tl3PbCl5 is composed mainly of the Tl 6s-like states, while the bottom of the conduction band is dominated by contributions of the empty Pb 6p-like states. The KKR-CPA results allow to assume that the width of the valence band increases somewhat while band gap, Eg, decreases when changing the crystal structure from P41212 to P41. The X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion-irradiated surfaces of a Tl3PbCl5 monocrystal grown by the Bridgman-Stockbarger method have been measured.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号