首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The single crystal of CaGa2S4:Eu is expected as a useful laser material with a high quantum efficiency of light emission. However, as far as our knowledge is concerned, the systematic study of the mixed compounds of Ca(1−x)EuxGa2S4 as a function of x has not been reported up to now. Here, we have first constructed the phase diagram of the CaGa2S4 and EuGa2S4 pseudo binary system, and show that it forms the solid solution. Then we have grown single crystals of these compounds. The maximum photoluminescence efficiency is achieved at x=0.25. From the three peak energies observed in the photoluminescence excitation (PLE) and absorption spectra, the 5d excited states are suggested to consist of three levels arising from the multiplets of Eu2+ ions.  相似文献   

2.
Glasses with molar composition of (100-x)B2O3-x[0.5 BaO-0.5 ZnO], x=40, 50, 60, 70 were prepared from the melts of ZnO, BaCO3 and H3BO3 mixture. The structure and thermal behavior were characterized by IR and Raman spectroscopy, DSC and Dilatometer. The investigation shows that the transition of the structural unit [BO4] (BIV) to [BO3] (BIII) happens when BaO and ZnO content x increases in the borate glass, resulting in fewer BIII-O-BIV bonds and more BIII-O-BIII bonds. At the same time, the diborate groups, which are found to be the predominant structural group of the glass with high B2O3 content, gradually changes into ring-type metaborate, pyro- and orthoborate groups. With increasing ZnO and BaO content x, the glass transition temperature (Tg) and the softening point (Tf) decreases, while linear expansion coefficient (α) increases, that comes from the weakening of the glass network.  相似文献   

3.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

4.
We present the infrared and Raman study of the optical phonon modes of the defective compounds ZnGa2Se4 and ZnGa2S4. Most of the compounds have been found to crystallize in the thiogallate structure (defect chalcopyrite) with space group where all cations and vacancies are ordered. For some Zinc compounds a partially disordered cationic sublattice with various degrees of cation and vacancy statistical distribution, which lead to the higher symmetry (defect stannite), has been reported. For ZnGa2Se4 we have found three modes of A symmetry, showing Raman activity only. In addition, we have observed each five modes of B and E symmetry, showing infrared as well as Raman activity. The number of modes and their symmetry assignment, based on polarized measurements, clearly indicate space group for the investigated crystals of ZnGa2Se4.Regarding ZnGa2S4 we have found three modes exclusively showing Raman activity (2A⊕1B1), and only eight modes showing infrared as well as Raman activity (3B2⊕5E). The assignment of the modes has been derived by analyzing the spectral positions of the vibrational modes in comparison to a number of compounds. From the number and symmetry assignment of the optical phonon modes we confirm that ZnGa2S4 most likely crystallizes in space group .  相似文献   

5.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

6.
Room temperature photoluminescence quantum efficiency of the alloy of Ca1−xEuxGa2S4 was measured as a function of x, and was found to be nearly unity under excitation at peak wavelength of excitation spectrum (510 nm) in the x range of 0.01≤x≤0.2. At larger x values, it tends to decrease, but still as high as 30% for stoichiometric compound EuGa2S4. Taking these backgrounds into account, pump-probe experiments were done with Ca1−xEuxGa2S4 for searching optical gain at x=0.2. The optical gain of nearly 30 cm−1 was confirmed to exist, though the pumping induced transient absorption which seems to limit the higher gain was found.  相似文献   

7.
Crystal structure of the 4-methylpyridinium tetrachloroantimonate(III), [4-CH3C5H4NH][SbCl4], has been determined at 240 K by X-ray diffraction as monoclinic, space group, P21/n, Z=8. Differential scanning calorimetry and dilatometric studies indicate the presence of two reversible phase transitions of first order type, at 335/339 and 233/289 K (cooling/heating) with ΔS=0.68 and 2.2 J mol−1 K−1, respectively. Crystal dynamics is discussed on the basis of the temperature dependence of the 1H NMR spin-lattice relaxation time T1 and infrared spectroscopic studies. The low temperature phase transition at 233 K of an order-disorder type is interpreted in terms of a change in the motional state of the 4-methylpyridinium cations. The phase transition at 335 K, probably of a displacive type, is characterised by a complex mechanism involving the dynamics of both the cationic and anionic sublattice. The 1H NMR studies show that the low temperature phase III is characterised only by the dynamics of the CH3 groups.  相似文献   

8.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

9.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

10.
Six kind CaGa2S4 single crystals doped with different rare earth (RE) elements are grown by the horizontal Bridgman method, and their photoluminescence (PL) spectra are measured in the temperature range from 10 to 300 K. The PL spectra of Ce or Eu doped crystals have broad line shapes due to the phonon assisted 4f-5d transitions. On the other hand, those of Pr3+, Tb3+, Er3+ or Tm3+ doped samples show narrow ones owing to the 4f-4f transitions. The assignments of the electronic levels are made in reference to the reported data of RE 4f multiplets observed in same materials.  相似文献   

11.
12.
Hexagonal ZnIn2S4 photocatalysts with different morphology and crystallinity (micro-structures) were prepared in aqueous-, methanol- and ethylene glycol-mediated conditions via a solvothermal/hydrothermal method. The aqueous- and methanol-mediated ZnIn2S4 presented to be Flowering-Cherry-like microsphere, while the ethylene glycol-mediated ZnIn2S4 presented to be micro-cluster. In comparison with two other products, aqueous-mediated ZnIn2S4 possessed the best crystallinity (micro-structure), which resulted in the highest photocatalytic activity for hydrogen evolution under visible-light irradiation. Additionally, aqueous-mediated ZnIn2S4 was found to be more stable than the other two ZnIn2S4 photocatalysts while undergoing the photocatalytic process. During the photocatalytic reaction, the average rates for hydrogen production over aqueous-, methanol- and ethylene glycol-mediated ZnIn2S4 were determined to be 27.3, 12.4 and 9.1 μmol h-1, respectively, in the present photocatalytic systems.  相似文献   

13.
Temperature-dependent polarized Raman spectra of KGd(WO4)2: (Er, Yb) single crystals have been analyzed over the 77-292 K temperature range. The Ag and Bg spectra obtained are discussed in terms of factor group analysis. The spectra have been found to reveal the bands related to internal and external vibrations of WO42−, WOW and WOOW molecular groups. Strong depolarization of the majority of the Raman bands has been observed in the whole temperature range. Some anomalies in the spectral parameters of selected Raman bands below 175 K have been discussed in terms of the local distortion of WO42− ions in KGd(WO4)2: (Er, Yb) crystals.  相似文献   

14.
Utilizing the Maker fringe method, SHG was observed in the 0.95GeS2·0.05In2S3 chalcogenide glass irradiated by the electron beam and the intensity of SH increases with the enhancement of beam current from 15 to 25 nA. According to Raman spectra of the as-prepared and the irradiated one, no distinct micro-structural transformation was found. In this work, the built-in charge model was founded to interpret the poling mechanism of electron beam irradiation, the emission of the secondary electrons and Auger electrons results in the formation of positive region and the absorbed electrons form negative region. The positive region was situated near the poling surface, and the negative region was much deeper than the positive region. Between the two opposite charged regions, a strong space-charge electrostatic field, Edc, is created, which leads to the nonzero χ(2) in the 0.95GeS2·0.05In2S3 glass. The emission of backscattered electrons does no contribution to the formation of Edc.  相似文献   

15.
Thin films of ZrO2 loaded with 10, 30 and 50 mol% Sm were prepared by a photochemical method using thin films of metal acetylacetonate complexes as precursors. The photolysis of these films induces the fragmentation of the acetylacetonate ligand and the partial reduction of metal ion together with volatile organic compounds. When the metallic complex is exposed to air, the product of the reaction is metal oxide. The photoreactivity of these films was monitored by FT-IR spectroscopy, followed by a post-annealing treatment process. The obtained films were characterized by X-ray photoelectron spectroscopy and atomic force microscopy.Photoluminescense studies of the films employed 400 nm radiation for excitation of the Sm ions present. The emission spectra showed signals arising from the 4G5/26HJ (J=3/2, 7/2, 9/2) transitions, where the 4G5/26H3/2 transition has the highest intensity. The concentration dependence of the PL intensity was also studied. A maximum PL intensity was observed with 10 mol% Sm content but then diminished with higher Sm concentrations.  相似文献   

16.
Field cooling (FC) poled/unpoled PMN-29%PT single crystal and room temperature (RT) poled/unpoled PMN-34.5%PT textured ceramic were investigated between ∼0 and 300 °C by thermal expansion, dielectric and Raman spectroscopy. New phase transitions are evidenced at 40, 91 and 180 °C in the case of FC PMN-29%PT as well as at 70 and 200 °C for RT PMN-34.5%PT and their order is discussed. The physical properties of the textured ceramics are rather similar to the ones observed for the single crystals that make them low-cost alternative for a wide range of applications. However, the temperatures and character of the phase transitions strongly depend on the kind of the poling conditions. Temperature dependences of the Raman line parameters show that the NbO6 octahedra remain stable during temperature increase, while TiO6 ones evolve quasi-continuously. The step transitions of the Pb2+ ion sublattice are evidenced. This suggests that the TiO6 and Pb2+ sublattices are especially coupled. The role of the TiO6 clusters on the structural phase transitions and dielectric properties of the PbMg1/3Nb2/3O3-xPbTiO3 (PMN-PT) system is discussed. The presence of the Raman modes above the maximum dielectric permittivity reveals that the local symmetry is lower than the cubic one (Pm3m). The decrease of the Raman line intensities vs. temperature indicates precisely the continuous evolution of the local symmetry towards the cubic one. The temperature evolution of the Rayleigh wing parameters appears sensitive to the phase transitions’ presence.  相似文献   

17.
Photoluminescence of chalcogenides of europium-gallium, EuGa2S4 and EuGa2Se4, doped with neodymium is investigated. The positions of Stark levels are determined from the spectra. The symmetry of luminescence centres is shown to be lower than cubic and the existence of nonequivalent centers is established. At 77 K the decay time of luminescence from the excited levels of Nd3+ depends on the spin of the states. That indicates a slow relaxation rate in the crystals under investigation. It is probable that these crystals can be used as effective luminophores.  相似文献   

18.
Eu2+-activated Sr2LiSiO4F phosphors were synthesized at 900°C by solid-state reaction in reducing atmosphere, and their photoluminescence (PL) properties were systematically investigated by diffuse reflection spectra, PL excitation and emission spectra, and by the fluorescence decay curve. Sr2LiSiO4F:Eu2+ emits intense green light at 520 nm originating from the 5d14f6−4f7 transition of Eu2+ under 365 nm n-UV excitation. The PL excitation spectrum matches the emission from n-UV chips. These materials could be promising green phosphors for use in generating white light in phosphor-converted white light-emitting-diodes (LEDs).  相似文献   

19.
Phase transitions of tetra(isopropylammonium)decachlorotricadmate(II) [(CH3)2CHNH3]4Cd3Cl10 crystal have been studied by infrared, far infrared and Raman measurements in wide temperature range, between 11 K and 388 K. The temperature changes of wavenumber, center of gravity, width and intensity of the bands were analyzed to clarify cationic and anionic contributions to the phase transitions mechanism. The results of investigation showed earlier by differential scanning calorimetry (DSC), thermal expansion and dielectric measurements clearly confirmed the sequence of phase transitions at T1=353 K, T2=294 K and T3=260 K. The current results derived from DSC and infrared measurements revealed additional phase transition at T4=120 K.  相似文献   

20.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号