首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The paper describes the preparation and emission property of scandia and Re doped tungsten matrix impregnated cathode. By an easy and reproducible way, solid-liquid doping combined with two-step reduction, powders of tungsten particles covered with scandium oxide were obtained. Compared with scandia mixed tungsten powders prepared by mechanically mixing, scandia and rhenium doped tungsten powders had smaller particle size, for example, scandia (3 wt%) and Re (5 wt%) doped tungsten powders had the average size of about 50 nm in diameter. Based on this kind of powder, scandia and Re doped tungsten matrix with the sub-micrometer sized tungsten grains and a more uniform distribution of Sc2O3 were obtained in this paper. Scandia and Re doped tungsten matrix impregnated cathode had shown excellent emission property and good emission uniformity. The space charge limited current densities of more than 58A/cm2 at 900 °Cb could be obtained and the work function of this cathode was as low as 1.18 eV.  相似文献   

2.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

3.
Tb-doped SrSi2O2N2 phosphors with promising luminescent properties were synthesized by the conventional solid-state reaction method, characterized by powder X-ray diffraction and studied by photoluminescence excitation and emission spectra. The synthesized materials exhibited a weak blue emission and a strong green emission in the region of 400-470 nm and 480-650 nm, which are attributed to 5D37Fj (j=5, 4, 3) and 5D47Fj (j=6, 5, 4, 3) transitions of Tb3+, respectively. The green emission from 5D47F5 at 543 nm showed the highest intensity under the optimized concentration of 0.1 mol, after which the quenching concentration became relevant. The quenching behavior of the emission of Tb3+ was explained by the cross-relaxation of its excited state.  相似文献   

4.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

5.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

6.
In this paper, BaMoO4 powders were prepared by the coprecipitation method and processed in a domestic microwave-hydrothermal. The obtained powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. The morphology of these powders were investigated by scanning electron microscopy (SEM). SEM micrographs showed that the BaMoO4 powders present a polydisperse particle size distribution. XRD and FT-Raman analyses revealed that the BaMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. UV-vis was employed to determine the optical band gap of this material. PL measurements at room temperature exhibited a maximum emission around 542 nm (green emission) when excited with 488 nm wavelength. This PL behavior was attributed to the existence of intrinsic distortions into the [MoO4] tetrahedron groups in the lattice.  相似文献   

7.
In this work, an α-Al2O3:C crystal was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as the raw materials. The optical, optically stimulated luminescence (OSL) properties and dosimetric characteristics of as-grown crystal were investigated. As-grown α-Al2O3:C crystal shows strong absorption band at 205, 230 and 256 nm. Three-dimensional thermoluminescence (TL) emission spectrum of the crystal shows a single emission peak at ∼415 nm. The OSL decay curve can be fitted to two exponentials, the faster component and the slower component. The OSL response of the crystal shows a linear-sublinear-saturation characteristic. As-grown α-Al2O3:C crystal shows excellent linearity in the dose range from 5×10−6 to 50 Gy. For doses higher than the saturation dose (100 Gy), the OSL sensitivity decreases as the dose increases.  相似文献   

8.
This paper reports the growth and optical properties of Eu2+/Li+-co-doped SrB4O7 single crystals. High-quality Eu,Li:SrB4O7 crystals without macro-defects or cracks were grown using the top-seeded solution growth (TSSG) method. The absorption and luminescent properties were measured and different spectra were observed in the as-grown crystals. As the doping amount of lithium increases, the absorption peak at 300 nm becomes stronger and the emission peak shifts to a longer wavelength. This phenomenon could be attributed to the doping lithium ions, which might affect the electric field distribution in the lattice structure.  相似文献   

9.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

10.
The 1 mol% Er3+- and 0-20 mol% Yb3+-codoped Al2O3 powders have been prepared by the nonaqueous sol-gel process using aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium and ytterbium nitrate as dopant under isopropanol environment. The two crystalline types of doped Al2O3, γ and θ, and a stoichiometric compound, (Yb,Er)3Al5O12, were obtained for all the Er3+-Yb3+-codoped Al2O3 powders at the sintering temperature of 1000 °C. The maximal intensity of both the green and red up-conversion emissions centered at about 523, 545, and 660 nm was observed for the 1 mol% Er3+- and 10 mol% Yb3+-codoped Al2O3 powders. The intensity ratio of the red to green up-conversion emission (Ired/Igreen) increased with increasing the Yb3+ doping concentration for the Er3+-Yb3+-codoped Al2O3 powders. Furthermore, the intensity ratio of the green up-conversion emission at about 523 to 545 nm (I523/I545) was proportional to the Yb3+ doping concentration and pump electric current, which was associated with the elevated temperature of powders.  相似文献   

11.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

12.
LiMnO2 and 0.23Li2MnO3·0.77LiMnO2 were prepared by a convenient one-step solid-state reaction from MnO2 using glucose as organic carbon resource. The crystal structure and morphology of the as-prepared materials was examined by X-ray powder diffraction and field emission scanning electron microscopy, respectively. The ration of Li to Mn was determined by means of atomic absorption spectrometry and the Li/Mn molar ratio in the products was 1.23. The electrochemical properties were investigated by charge-discharge test and electrochemical impedance measurements. The prepared composite material presented an initial discharge capacity of 45 mAh g-1 and a good cycling performance with reversible capacity of 218 mAh g-1 after 30 cycles. On the basis of the experimental results, the discharge efficiency of this composite material more than 100% was also discussed.  相似文献   

13.
The photoluminescence (PL) emission in structurally disordered Ba0.8Ca0.2TiO3 (BCT20) powders was observed at room temperature with laser excitation at lines 355 and 460 nm. The structural evolution perovskite-like titanate BCT20 powders prepared by a soft chemical processing at different annealing temperatures were accompanied by X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES). Intermediate oxycarbonate phase was identified and your influence with PL emission was discarding. BCT20 annealed at 500 °C displays intense PL emission. The results indicate relationship between broad PL band and order-disorder degree.  相似文献   

14.
In this paper, seven kinds of silane coupling reagents were employed as silicate sources to prepare CaSiO3:Eu3+ phosphors by the sol-gel method. The different silicate precursors were used to adjust the microstructure and size of the resulting phosphors. The crystallite size of phosphors is in the range of 30-35 nm and some of them show regular microstructure after high-temperature thermolysis. The photoluminescence properties show that all of them exhibit the characteristic fluorescence 5D07FJ (J=0, 1, 2, 3, 4) of the Eu3+ ion and the strongest one is the red emission at 610 nm. Furthermore, the emission quantum efficiency (η) of the 5D0 Eu3+ excited state has been calculated to be around 33% from the emission spectrum and the lifetime of the Eu3+ first excited level (τ, 5D0).  相似文献   

15.
Cathodoluminescence (CL) properties of SiO2 powders activated with thulium (Tm3+) and holmium (Ho3+) ions prepared by a sol–gel process were investigated. Different molar concentrations of Tm3+ co-doped with Ho3+ were studied. The 460 nm peak was monitored and the influence of the beam energy and concentration of Tm3+ ions on the emission properties of this peak was also monitored. The peculiar behavior whereby the 460 nm emission peak decreases and the increase in the 705 and 865 nm peaks with the increase in the concentration of Tm3+ ions is reported. The relationship between the accelerating beam voltage and the CL intensity of the blue emission peak (460 nm peak) is established. Morphology, particle size and optical properties were characterized with Scanning electron microscopy (SEM), UV/VIS Lambda 750 S spectrometer and Auger electron spectroscopy (AES) equipped with Ocean Optics S2000, respectively.  相似文献   

16.
Microwave-assisted synthesis is a novel method used to synthesize CdMoO4 nanoparticles in propylene glycol. The effects of reaction time and microwave power on phase, morphologies, and optical properties of CdMoO4 nanoparticles were studied, using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and UV-visible spectroscopy. The present analyses proved that these crystalline powders were scheelite-type tetragonal structured CdMoO4, with the crystallite size of 14-20 nm, and 4.51-4.73 eV band gaps, controlled by the synthetic conditions.  相似文献   

17.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

18.
Present study reports the structural, optical and dielectric properties of Ni substituted NdFe1−xNixO3 (0 ≤ x ≤ 0.5) compounds prepared through the ceramic method. X-ray diffraction (XRD) confirmed an orthorhombic crystal structure of all the samples. Both unit cell volume and grain size were found to decrease with an increase in Ni concentration. Morphological study by Scanning electron microscope (SEM) shows less porosity with Ni substitution in present system. From UV–vis spectroscopy, the optical band gap was found to increase with Ni doping. This observed behavior was explained on the basis of reduction in crystallite size, unit cell volume and its impact on the crystal field potential of the system after Ni substitution. The dielectric properties (?′ and tanδ) as a function of frequency or temperature, and the ac electrical conductivity (σac) as a function of frequency have been studied. Hopping of charge carriers between Fe2+ → Fe3+ ions and Ni2+ → Ni3+ ions are held responsible for both electrical and dielectric dispersion in the system. Wide optical band gap and a very high dielectric constant of these materials promote them to be a suitable candidate for memory based devices in electronic industry.  相似文献   

19.
The luminescence properties of (Y0.9Eu0.1)VO4 phosphor with Na2CO3 flux prepared using the solid-state reaction were investigated. The XRD patterns show that all of the peaks are attributed to the YVO4 phase. The best crystallinity was obtained with 2 wt% Na2CO3 flux addition. The surface morphology of (Y0.9Eu0.1)VO4 phosphor changed from fluffy to a bar shape structure after Na2CO3 flux addition due to the tetragonal crystal system of YVO4. The calcined powders emit bright red luminescence centered at 618 nm due to the 5D07F2 electric dipole transition under an excitation wavelength of 318 nm; its intensity was increased about 15% with 2 wt% Na2CO3 flux addition. Red shift behavior was observed for the charge transfer state (CTS) absorption, which was due to the grain size of (Y0.9Eu0.1)VO4 phosphor increasing with increasing flux content. For 2 wt% Na2CO3 flux addition, the red emission of the (Y0.9Eu0.1)VO4 phosphor had CIE chromaticity coordinates of (0.66, 0.34), which are very close to the NTSC system standard red chromaticity coordinates of (0.67, 0.33).  相似文献   

20.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号