首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV irradiation of polymeric PMMA films containing HAuCl4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.  相似文献   

2.
Dielectric measurements have been carried out for the determination of real and imaginary parts of the permittivity of a newly synthesized, unusually shaped liquid crystal. The sample has been investigated in the frequency range from 100 Hz to 10 MHz within a temperature range 80-130 °C. The dielectric measurements in the smectic A phase indicate a Cole-Cole type of dispersion, and the activation energy was found to be 5.5 meV by using the Arrhenius plot of relaxation time. In addition to this, thermal and optical transmittance studies have also been conducted in the above mentioned temperature range, and the temperature dependence of these parameters has been discussed in detail. The phase transition temperature obtained from a differential scanning calorimetry (DSC) study matches within 2 °C that was obtained from an optical transmittance study. The dielectric and optical behavior of the unusually shaped liquid crystal has been explained on the basis of a proposed theoretical model in which a sample possesses two different conformers having induced polarizations in opposite directions.  相似文献   

3.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

4.
This work reports the synthesis of indium oxide nanoparticles and their thermal, structural, microstructural and optical characterization. The preparation method is based on a surfactant-free room temperature soft chemistry route. Spherical indium oxide nanoparticles (about 8 nm in diameter) were obtained after thermal treatment of gels at 400 °C for 2 h, as shown by X-ray diffraction experiments and nitrogen adsorption measurements. Transmission electron microscopy observations confirm the single-crystalline nature of the produced nanoparticles. The photoluminescence emission spectrum at room temperature shows a broad peak with onset at approximately 315 nm as a result of quantum size effect as revealed by small-angle X-ray scattering.  相似文献   

5.
Mg-doped Ni nanoparticles with the hexagonal close-packed (hcp) and face-centered cubic (fcc) structure have been synthesized by sol-gel method sintered at different temperatures in argon atmosphere. The sintering temperature played an important role in the control of the crystalline phase and the particle size. The pure hcp Mg-doped Ni nanoparticles with average particle size of 6.0 nm were obtained at 320 °C. The results indicated that the transition from the hcp to the fcc phase occurred in the temperature range between 320 °C and 450 °C. Moreover, the VSM results showed that the hcp Mg-doped Ni nanoparticles had unique ferromagnetic and superparamagnetic behavior. The unsaturation even at 5000 Oe is one of the superparamagnetic characteristics due to the small particle size. From the ZFC and FC curves, the blocking temperature TB of the hcp sample (6.0 nm) was estimated to be 10 K. The blocking temperature was related to the size of the magnetic particles and the magnetocrystalline anisotropy constant. By theoretical calculation, the deduced particle size was 6.59 nm for hcp Mg-doped Ni nanoparticles which was in agreement with the results of XRD and TEM.  相似文献   

6.
l-Tyrosine (represented as l-Tyr) intercalated MgAl, NiAl and ZnAl layered double hydroxides (LDHs) have been obtained by the method of coprecipitation. In situ FT-IR, in situ HT-XRD and TG-DTA measurements allow a detailed understanding of the thermal decomposition process for the three intercalated composites. In situ HT-XRD reveals that the layered structure of l-Tyr/MgAl-LDH collapses completely at 450 °C with the first appearance of reflections of a cubic MgO phase, while the corresponding temperature for l-Tyr/NiAl-LDH is some 50 °C lower. In contrast, there is a major structural change in l-Tyr/ZnAl-LDH at 250 °C as shown by the disappearance of its (0 0 6) and (0 0 9) reflections at this temperature accompanied by the appearance of reflections of ZnO. In situ FT-IR experiments give information about the decomposition of the interlayer -Tyr ions. The decomposition temperature of l-Tyr in the ZnAl host is about 50 °C lower than the corresponding values for the MgAl and NiAl hosts. TG-DTA curves show a significant weight loss step (170-260 °C) in l-Tyr/ZnAl-LDH which is due to the dehydroxylation of the host layers, with a corresponding weak endothermic peak at 252 °C. This temperature range is much lower than that observed for MgAl and NiAl hosts, indicating that the ZnAl-LDH layers are relatively unstable. The data indicate that the order of thermal stability of the three intercalates is: l-Tyr/MgAl-LDH > l-Tyr/NiAl-LDH > l-Tyr/ZnAl-LDH.  相似文献   

7.
Preparation and characterization of CuZnAl catalysts by citrate gel process   总被引:1,自引:0,他引:1  
CuZnAl catalysts with different Cu loading (1-23 wt%) and a Zn:Al atomic ratio nearly constant (Zn:Al≅0.6), were prepared by the citrate sol-gel method and characterized by different techniques such as TG, BET, TPR, XRD and FTIR. The final structure obtained was strongly influenced by the calcination temperature and metal precursor composition. XRD and quantitative Rietveld revealed Zn and Al species were mainly incorporated into the normal spinel matrix and copper predominantly forms CuO. The formation of a ZnAl2O4 spinel was favored by increasing Cu amounts and/or by increasing calcination temperature (from 500° to 700 °C). The spinel phase of the catalysts calcined at 700 °C, had a good thermal stability and it was preserved after TPR measurements. Under hydrogen atmosphere Cu2+ was fully reduced to Cu0. Although the composition and the calcination temperature have a strong influence on the phase nature in CuZnAl catalysts, the reducibility of Cu species changes in a non significant way.  相似文献   

8.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

9.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

10.
We investigated electrical- and magneto-resistance control in magnetite (Fe3O4) nanoparticle sinter (MNPS) by the regulation of heat treatment (HT) temperature. MNPS was produced from hematite (α-Fe2O3) nanoparticles (HNP’s) using a deoxidization reaction. The average size of HNP was 30 nm, and HT was carried out between 400 and 800 °C. X-ray diffraction, magnetization, electrical resistivity (ER), and magneto-resistivity (MR) measurements were performed at temperatures ranging from 5 to 300 K. The ER and MR behaviors were considerably different at HT temperatures above and below ∼600 °C. After HT below ∼600 °C, ER followed the Mott-type variable-range-hopping conduction, and MR showed large values over a wide temperature range. After HT above ∼600 °C, ER indicated a Verwey transition near 110 K and MR showed small values, except in the vicinity of the Verwey transition temperature. Changing the HT temperature altered the coupling between adjacent magnetite nanoparticles (MNPs) and affected the crystallinity of MNPS. Below ∼600 °C, ER and MR were dominated by grain-boundary conduction, while above ∼600 °C they were determined by inter-grain conduction. The application of a magnetic field to the grain-boundary region, which had random localized spins, caused a large enhancement in MR.  相似文献   

11.
Thin films of CdTe have been deposited onto stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature and pH of the bath have been optimized by photoelectrochemical (PEC) technique to get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize as deposited and also as annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature, and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray (EDAX) study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy (SEM) reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the CdTe film.  相似文献   

12.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

13.
Raman study of a natural hydrous phlogopite was carried out at temperatures up to 500 °C for the first time. Evolution of four well-resolved Raman modes at wavenumbers 196, 278, 322, and 682 cm−1 was followed in detail with temperature increase. The analysis of data reveals linear decrease of vibrational wavenumbers in the studied temperature range, with small but experimentally significant discontinuities occurring at a temperature of 365±15 °C. Although the overall appearance of Raman spectra remains intact on crossing this temperature, the presence of discontinuities, as well as a marked difference between Gruneisen parameters calculated for high- and low-temperature ranges, signifies the presence of a temperature-induced phase transformation. By combining and correlating the results of the present Raman study with the high-temperature X-ray work performed by Tutti et al. [High-temperature study and thermal expansion of phlogopite, Phys. Chem. Miner. 27 (2000) 599-603] we arrive at the interpretation of a temperature-induced structural phase transformation in phlogopite without a significant symmetry change, with an underlying microscopic mechanism involving deformation of Mg octahedra and rotation of tetrahedral grid from ditrigonal toward hexagonal at the transition temperature.  相似文献   

14.
Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.  相似文献   

15.
A novel nanocomposite based on biodegradable poly(l-lactide) (PLLA) was prepared by the incorporation of surface modified magnesia (g-MgO) nanoparticles using a solution casting method. The mechanical properties, biodegradable properties and protein adhesion behavior of the g-MgO/PLLA nanocomposites were investigated. Scanning electron microscopy (SEM) results showed that g-MgO nanoparticles could comparatively uniformly disperse in PLLA matrix. The addition of g-MgO nanoparticles to PLLA matrix improved the tensile strength and elastic modulus, whereas reduced the elongation at break. The mass loss results showed that the nanocomposites with higher g-MgO content had faster degradation rates. The in vitro pH value determination results indicated that the g-MgO nanoparticles could neutralize effectively the lactic acid resulting from the degradation of PLLA. The g-MgO/PLLA nanocomposites exhibited enhanced protein adsorption, i.e., with the increase of g-MgO content, the amount of protein adsorption increased. The (5 wt%)g-MgO/PLLA nanocomposites adsorbed 33% more protein than the pure PLLA.  相似文献   

16.
Mesoporous carbon composites, containing nickel and nickel oxide nanoparticles, were obtained by soft-templating method. Samples were synthesized under acidic conditions using resorcinol and formaldehyde as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer Lutrol F127 as a soft template and nickel and nickel oxide nanoparticles, and nickel nitrate as metal precursors. In addition, a one set of samples was obtained by impregnation of mesoporous carbons with a nickel nitrate solution followed by further annealing at 400 °C. Wide angle X-ray powder diffraction along with thermogravimetric analysis proved the presence of nickel nanoparticles in the final composites obtained using nickel and nickel oxide nanoparticles, and Ni(NO3)2 solution. Whereas, the impregnation of carbons with a nickel nitrate solution followed by annealing at 400 °C resulted in needle-like nickel oxide nanoparticles present inside the composites’ pores. Low-temperature (−196 °C) nitrogen physisorption, X-ray powder diffraction, and thermogravimetric analysis confirmed good adsorption and structural properties of the synthesized nickel-carbon composites, in particular, the samples possessed high surface areas (>600 m2/g), large total pore volumes (>0.50 cm3/g), and maxima of pore size distribution functions at circa 7 nm. It was found that the composites were partially graphitized during carbonization process at 850 °C. The samples are stable in an air environment below temperature of 500 °C. All these features make the synthesized nickel-carbon composites attractive materials for adsorption, catalysis, energy storage, and environmental applications.  相似文献   

17.
Magnetic nanocomposites formed by cobalt ferrite particles dispersed in a silica matrix were prepared by a sol-gel process. The effects of the thermal treatment temperature and the salt concentration on the structural and magnetic properties of the composites were investigated. By controlling these parameters, CoFe2O4/SiO2 nanocomposites with different crystallite size and magnetic properties were obtained. By increasing the annealing temperature and salt concentration, composites with a progressive increase in the coercive field and of the density of magnetization were produced. In particular, a nanocomposite, with a Fe/Si molar concentration of 21%, obtained by drying the gel at 150 °C and further annealing at 800 °C, has a coercivity of 2000 Oe, which is more than twice higher than the coercivity of bulk cobalt ferrite.  相似文献   

18.
In this study, we investigated the effects of lithium phosphorus oxynitride (LiPON) solid electrolyte thin-film deposition on the electrochemical performance and thermal stability of pristine graphite and carbon-coated graphite composite anodes. The LiPON film was deposited by radio frequency (rf) magnetron sputtering. We studied the thermal stability of the lithiated electrodes when immersed in the presence of a liquid electrolyte by differential scanning calorimetry (DSC).The LiPON thin-film coating suppressed the impedance growth during the cycling process and inhibited the reaction between the lithiated electrode and the electrolyte, thus improving the cycle performance and thermal stability of the graphite electrode. However, for the carbon-coated graphite electrode, the heat evolution below 250 °C decreased, whereas that below 300 °C increased. We attributed this phenomenon to the low thermal stability of the LiPON thin-film coating owing to an exothermic reaction between the LiPON film and the electrolyte that occurs at approximately 290 °C.  相似文献   

19.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

20.
Crack free and smooth surfaces of poly [4,5-difluoro 2,2-bis (trifluoromethyl)-(1,3 dioxole)-co-tetrafluoroethylene] (TFE-co-TFD) thin films have been deposited by wet chemical dip coating technique on polished quartz and glass slide substrates. The deposited films have been subjected to annealing at different temperatures ranging from 100 to 500 °C for 1 h in argon atmosphere. The elemental composition of the as-deposited (xerogel) thin film as well as film annealed at 400 °C was measured by X-ray photoelectron spectroscopy and observed that there was no change in the composition of the film. X-ray diffraction pattern revealed the amorphous behaviour of both as-deposited and film annealed at 400 °C. Surface morphology and elemental composition of the films have been examined by employing scanning electron microscopy attached with energy dispersive X-ray analyser, respectively. It was found that as the annealing temperature increased from 100 to 400 °C, nano-hemisphere-like structures have been grown, which in turn has shown increase in the water contact angle from 122o to 148o and oil (peanut) contact angle from 85° to 96°. No change in the water contact angle (122°) has been observed when the films deposited at room temperature were heated in air from 30 to 80 °C as well as exposed to steam for 8 days for 8 h/day indicating thermal stability of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号