首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

2.
通过非真空工艺利用CuO、In2O3混合氧化物制备CuInSe2薄膜太阳能电池中的吸收层CuInSe2薄膜. 利用柠檬酸法制备出粒径在100 nm以下的CuO、In2O3混合氧化物纳米粉,在浆料中加入过量的硒,用来创造非平衡的反应条件促进氧化物的还原和硒化. 考察了影响硒化的几个反应条件,最优的硒化条件为1.9 kPa的Se蒸汽压中,550 °C硒化60 min.  相似文献   

3.
The overall composition and the compositional profile of the quaternary semiconductor Cu(In1−x,Gax)Se2 (CIGS) have strong effects on the performance of photovoltaic devices based on it. Recent work that has yielded ∼20% efficient solar cells based on CIGS has forced extra attention on quantitative analysis of the absorber layers. In this paper we present details of the procedures used to generate detailed compositional profiles of graded Cu(In1−x,Gax)Se2 thin films by Auger electron spectroscopy (AES) that when integrated, agree quantitatively with inductively-coupled plasma optical emission spectrometry (ICP-OES) data on the same films. The effects of sample rotation during sputter depth profiling on the quantification results are described. Details of the procedures used for the ICP-OES and wavelength-dispersed electron probe microanalysis (EPMA) analyses are also presented. Finally, we show why X-ray microanalysis techniques alone should not be used to argue that specific windows of copper and gallium concentrations can yield high performance devices.  相似文献   

4.
The aim of this work was to study the effect of MoNx film substrates on the structural properties of CuInSe2 films prepared by selenization of metallic Cu-In alloy precursors. MoNx films were prepared by reactive dc-magnetron sputtering. All the CuInSe2 films exhibit single phase chalcopyrite structure with (1 1 2) preferred orientation, which can be explained by the reduction of lattice mismatch between CuInSe2 and MoNx. The bulk composition of selenized CuInSe2 films are near stoichiometric, but the surface composition analysis suggests Cu deficiency on surface area. Furthermore, ordered defect compound, CuIn2Se3.5 is found on the surface of CuInSe2 films. The results will be helpful for fabricating Cd-free ZnO buffer layer CuInSe2 and Cu(In1−xGax)Se2 based thin film solar cells.  相似文献   

5.
A two-stage selenization method for preparing CuInSe2 thin films in a carrier-gas (nitrogen) flow is developed. The dependences between the morphology and structure of CuInSe2 thin films and the selenization temperature are studied via electron microscopy and X-ray diffraction analysis. It is demonstrated that the film incorporates copper and indium selenides in the temperature range 300°C ≤ T < 400°C and a stoichiometric film with ordered chalcopyrite is formed at Т = 400°С. The possible mechanism whereby a CuInSe2 thin film is generated with the participation of selenization centers, namely, Cu2Se and In2Se3 grains, is discussed.  相似文献   

6.
Thin films of Cu(In,Ga)Se2 were fabricated by evaporation from ternary CuGaSe2 and CuInSe2 compounds for photovoltaic device applications and their properties were investigated. From XRF analysis, the Cu:(In+Ga):Se atomic ratio in all thin films was approximately 1:1:2. The Ga/(In+Ga) atomic ratio in the thin films changed linearly from 0 to 1.0 with increasing the [CGS]/([CGS]+[CIS]) mole ratio in the evaporating materials. However, for thin films prepared at the [CGS]/([CGS]+[CIS]) mole ratio above 0.4, the composition by EPMA analysis was not consistent with that by XRF analysis. The result of EPMA analysis showed that the surface of a thin film was Cu-rich. XRD studies demonstrated that the thin films prepared at the [CGS]/([CGS]+[CIS]) mole ratio under 0.2 had a chalcopyrite Cu(In,Ga)Se2 structure and the preferred orientation to the 112 plane. On the other hand, XRD patterns of the thin films produced at the [CGS]/([CGS]+[CIS]) mole ratio above 0.6 showed the diffraction lines from a chalcopyrite Cu(In,Ga)Se2 and a foreign phase. The separation of a peak was observed near 2θ=27°, indicative the graded Ga concentration in Cu(In,Ga)Se2 thin film.  相似文献   

7.
Intense pulsed light (IPL) technique has been proposed to make large grains Cu(In0.7Ga0.3)Se2 (CIGS) film using CIGS particles. The proposed process is non-vacuum based and performed at room temperature without selenization treatment. Melting and recrystallization of CIGS particles to larger grains without structural deformation and phase transformation are proved with adequate characterization evidences. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion analysis (EDS) were used to characterize the prepared films. Melting of the CIGS particles and recrystallization to larger grains by light energy in 20 ms short reaction time could be the reason for no structural deformation and secondary phase generation during the process. The CIGS film prepared from its constituent nanoparticles by IPL treatment has great potential for use as absorber layer for solar cell application and is expected to have large impact on cell fabrication process in terms of cost reduction and simplified processing.  相似文献   

8.
We report spin polarization P of Ru2−xFexCrSi Heusler alloys by the Andreev reflection technique. Ru2−xFexCrSi with L21-type structure and saturation magnetic moment of per formula unit is theoretically predicted to be half-metals in the wide range of the composition x. We had clarified that the experimental results of saturation magnetic moment in Fe-rich compounds had coincided with the theoretical prediction. Therefore, we have measured the differential conductance of Ru2−xFexCrSi/Pb planar-type junctions. The P value of Ru2−xFexCrSi was determined by fitting the differential conductance with the modified Blonder-Tinkham-Klapwijk theory. We have found that the behavior of P for Ru2−xFexCrSi was independent of the composition x in the Fe-rich region; P=0.53 for both of x=1.5 and 1.7. The spin polarization is the similar value to Co-based Heusler alloys.  相似文献   

9.
Superstrate-type Cu(In,Ga)Se2 (CIGS) thin film solar cells were fabricated using Zn1−xMgxO buffer layers. Due to the diffusion of Cd into CIGS during the growth of the CIGS layer, the conventional buffer material of CdS is not suitable. ZnO is a good candidate because of higher thermal tolerance but the conduction band offset (CBO) of ZnO/CIGS is not appropriate. In this study, the Zn1−xMgxO buffer layers were used to fulfill both the requirements. The superstrate-type solar cells with a soda-lime glass/In2O3:Sn/Zn1−xMgxO/CIGS/Au structure were fabricated with different band gap energies of the Zn1−xMgxO layer. The CIGS layers [Ga/(In + Ga)∼0.25] were deposited by co-evaporation method. The substrate temperature during the CIGS deposition of 450 °C did not cause the intermixing of the Zn1−xMgxO and CIGS layers. The conversion efficiency of the cell with Zn1−xMgxO was higher than that with ZnO due to the improvement of open-circuit voltage and shunt resistance. The results well corresponded to the behavior of the adjustment of CBO, demonstrating that the usefulness of the Zn1−xMgxO layer for the CBO control in the superstrate-type CIGS solar cells.  相似文献   

10.
This paper presents a spectroscopic analysis of the interface between a CuIn1−xGaxS2 (CIGS2) absorber and a CdS buffer layer on stainless steel foil by Auger electron spectroscopy (AES), inverse photoemission spectroscopy (IPES) and photoelectron spectroscopy (PES) such as X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). By combining these spectroscopic techniques, detailed information about the electronic and chemical properties of the CIGS2 surface and the CdS/CIGS2 interface can be obtained. The gallium concentration in CIGS2 films was found to increase continuously towards the Mo back contact. XPS analysis showed the presence of KCO3 on the surface of CdS, deposited on etched and un-oxidized samples indicating diffusion of potassium. No potassium was observed on oxidized as well as samples having thicker CdS (50 nm) indicating the effectiveness of oxidation and chemical bath deposition (CBD) process in cleaning the sample surface effectively. In addition, investigation of the electronic level alignment at the interface has been carried out by combining PES and IPES. Conduction band offset of −0.45 (±0.15) eV and a valence band offset of −1.06 (±0.15) eV were measured. These unfavorable conditions limit efficiency of CIGS2 thin film solar cells.  相似文献   

11.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

12.
Copper indium gallium selenide (CIGS) was deposited by metallic precursors sputtering and subsequently submitted to a selenization process. The upper CdS layers were deposited by chemical bath deposition (CBD) technique. The CdS/CIGS interfaces were investigated by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). As checked by XPS analysis, the CIGS surface exhibited a hydroxide-terminated CdSe layer when treated with Cd Partial Electrolyte solution (Cd PE). Its thickness was roughly estimated to several nanometers. A 100 nm thick CdS layer was deposited onto CIGS surface. The TEM images revealed a clear and sharp interface between CdS and CIGS. XPS analysis showed a CIGS surface covered by a pinhole free and homogeneous CdS layer. XPS depth profile measurement of the CdS/CIGS interface did not evidence elemental inter-diffusion between the CIGS and CdS layers, in very good agreement with TEM observations.  相似文献   

13.
Homogeneous single-phase Cu(In0.75Ga0.25)(Se1−ySy)2 chalcopyrite alloys were prepared by a novel two-step growth process. CuIn0.75Ga0.25 precursors were deposited by DC magnetron sputtering and the subsequent reaction processes in a reactive H2Se/Ar/H2S atmosphere was optimized to prevent the formation and separation of stable ternary phases. X-ray diffraction (XRD) analysis of these films revealed characteristic chalcopyrite peaks with a high degree of symmetry, indicative of homogeneous rather than compositionally graded material. The lattice parameters of the single-phase Cu(In0.75Ga0.25)(Se1−ySy)2 pentenary alloys decreased linearly with an increase in the S/(S+Se) ratio in accordance with Vegard's law. X-ray photoelectron spectroscopy (XPS) depth profiling confirmed the in-depth compositional uniformity of the pentenary alloys, prepared under optimized selenization/sulfurization conditions.  相似文献   

14.
敖建平  杨亮  闫礼  孙国忠  何青  周志强  孙云 《物理学报》2009,58(3):1870-1878
采用电沉积法获得了接近化学计量比的贫铜和富铜的Cu(In1-xGax)Se2(CIGS)预置层,研究比较了两种预置层及其硒化处理后的成分和结构特性.得到了明确的实验证据证明,硒化后富铜薄膜中的CuxSe相会聚集凝结成结晶颗粒分散在表面.研究表明:在固态源硒化处理后,薄膜成分基本不变;当预置层中原子比Cu/(In+Ga)<11时,硒化后薄膜表面存在大量的裂纹;而当Cu/(In+Ga) >12时,可以消除裂纹的产生,形成等轴状小晶粒;富铜预置层硒化时蒸发沉积少量In,Ga和Se后,电池效率已达到68%;而贫铜预置层硒化后直接制备的电池效率大于2%,值得进一步深入研究. 关键词: 1-xGax)Se2薄膜')" href="#">Cu(In1-xGax)Se2薄膜 电沉积 硒化处理 贫铜或富铜薄膜  相似文献   

15.
李健  朱洁 《物理学报》2007,56(1):574-582
以共溅射法制备的Cu-In预制膜为衬底材料,以硒粉为原料,尝试了几种特殊的硒化方案,包括单源硒化法、双源硒化法、表面喷粉硒化法、分步硒化退火和同步硒化退火等5种具有代表性和创新性的方案,研究了硒源的摆放方式、升温方法对薄膜质量的影响,比较了不同方法制备的CuInSe2(CIS)薄膜在形貌、成分、相结构等方面的异同. 系统地分析了硒化温度、退火温度和退火时间对CuInSe2薄膜成分的影响,研究了各元素的百分含量随硒化退火条件的变化规律,为更准确地把握CIS薄膜的成分和相结构提供有益的借鉴.  相似文献   

16.
In this study CuInSe2 and CuInS2 thin films were prepared onto ITO glass substrate using the electrodeposition technique in aqueous solution. The electrodeposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis. The annealing effects on electrodeposited precursors were investigated. The chalcopyrite structure of CuInSe2/CuInS2 showed an enhancement of crystallinity after subsequent selenization/sulfurization treatment in Se/S atmosphere, respectively. XRD and SEM studies revealed a dramatic improvement of the crystalline quality of CIS films after annealing treatments. Mott–Schottky measurements were used to assess the conductivity type of the films and their carrier concentration. The prepared samples underwent an etching process to remove the binary accumulated Cu2?x(Se,S) phases shown in FESEM pictures. This etching process has shown a noticeable decrease in both, the flat band potential, Vfb (V), and the number of acceptors, NA (cm?3) in selenized CuInSe2 and sulfurized CuInS2 samples.  相似文献   

17.
This paper reports the measurement of space charge limited conduction (SCLC) on the fabricated thin films of Se95−xSxZn5 (0.2≤x≤10) in temperature range 313–353 K for the first time. At high electric fields (E∼104 V/cm), the current could be fitted into the theory of space charge limited conduction, in case of uniform distribution of localized states in mobility gap. The homogeneity and surface morphology of thin films were assessed by scanning electron microscopy. The crystalline nature of the thin films was confirmed by powder XRD and the crystallite size was calculated using Scherer's formula. The crystallite size and density of localized states were found to increase with the increase of sulfur concentration. DC conductivity and activation energy were calculated and found to decrease and increase respectively, with the increase of sulfur concentration.  相似文献   

18.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA.  相似文献   

19.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

20.
The chemical reactions during rapid thermal processing of stacked elemental layers were investigated by angle-dispersive in situ X-ray diffraction. With a time resolution of 5 diffractograms per minute four different solid state reactions resulting in ternary chalcopyrites were identified: (A) CuSe+InSe→CuInSe2, (B) Cu2Se+2InSe+Se→2CuInSe2, (C) Cu2Se+In2Se3→2CuInSe2, (D) Cu2Se+Ga2Se3→2CuGaSe2. All these reactions form pure tenary chalcopyrites. The reaction resulting in the mixed crystal Cu(In,Ga)Se2 starts not before (B) has begun. The reaction speed of (A) and the fraction of CuInSe2 formed by (B) depend on Na-doping and Se-pressure, (C) takes place only, if the reaction paths (A) and (B) are suppressed. Reaction (D) is observed only, if 25% In is replaced by Ga in the precursor. The diffractograms were evaluated by Rietveld refinement to give the phase contents of the samples as a function of reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号