首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

2.
An oxide semiconductor Ca2NiWO6, with double-perovskite crystal structure, was synthesized by solid-state reaction method. The compound Ca2NiWO6 was characterized by X-ray diffraction, UV-visible diffuse reflectance, and photoluminescence. The photocatalytic properties of the compound for water splitting were investigated under UV and visible light irradiation. The results showed H2 evolution was not observed over the compound under visible light irradiation (λ>420 nm) with a 300 W xenon arc lamp when using methanol (CH3OH) as electron donor, although the compound was responsive to visible light region. Based on the experimental results, a possible band structure was proposed through theoretical calculation of the electronic structure by using the full potential-linearized augmented plane wave (F-LAPW). The band structure and photocatalytic properties were attributed to the special crystal and electronic structures. Due to the oxygen vacancies in the compound, which worked as electron-hole recombination centers, the photocatalytic activity of the compound was low.  相似文献   

3.
Thin Cd2Nb2O7 films were grown on single-crystal p-type SiO2/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO2/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements.  相似文献   

4.
In this study, nano-TiO2 thin film electrode and solar cell have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption spectra, contact angle, X-ray photoelectron spectroscopy (XPS), and current-voltage characteristics analyses. X-ray diffraction patterns show that the best sintering temperature of a nano-TiO2 film is 600 °C, at which TiO2 anatase phase forms best and the particle size of 8-10 nm can be obtained. The SEM images of a nano-TiO2 thin film show that the surface of the film is smooth and porous, and the thickness of the nano-TiO2 film is 4 μm. The measurements of contact angle between nano-TiO2 film and deionized water (DI water) reveal that the nano-TiO2 film is super-hydrophilic when solarized under ultraviolet. The electrode of dye-sensitized solar cell is used as a free-base porphyrin with carboxyl group, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the sensitizer to adsorb onto the TiO2 thin film. From the results of ultraviolet-visible absorption spectra and XPS analyses of the electrode, the effects of nano-TiO2 particles’ addition to the electrode of dye-sensitized solar cell can improve the absorption of visible light (400-700 nm) and increase electrons transferred from TCPP to the conduction band of TiO2, resulting in the enhancement of efficiency for dye-sensitized solar cells.  相似文献   

5.
Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.  相似文献   

6.
Compounds LiNi1−xSbxO2 (x=0, 0.1, 0.15, 0.2, 0.25) were synthesized by the two-step calcination method. The structural and morphological properties of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirms that the uniform solid solution has been formed in the as-prepared compounds without any impurities. It is shown that the crystal lattice parameters (a, c) of the Sb-doped compounds are bigger than those of pure LiNiO2 and the Sb-doped compound with x=0.2 consists of spherical-like nanoparticles with a mean grain size of 50 nm. The electrochemical performances of as-prepared samples were studied via galvanostatic charge-discharge cycling tests. The compound with x=0.2 exhibits excellent capacity retention during the charge-discharge processes due to its reinforced structural stability, and a discharge capacity of 102.4 mAh/g is still obtained in the voltage range of 2.5-4.5 V after 20 cycles. Thermal analysis further confirms that the structural stability of LiNi0.8Sb0.2O2 is superior to that of pure LiNiO2.  相似文献   

7.
We present an optimisation of our recipe for the CdS chemical bath deposition process as applied to solar cells based on polycrystalline CuGaSe2 (CGSe) absorber layers prepared in two stages by physical vapour deposition. We investigate the influence of the ammonia (NH3) and the thiourea (H2NCSNH2) concentration, both being constituents of the chemical bath deposition (CBD) solution, at a deposition temperature of 80 °C on the microstructural and optical properties of CdS layers and on ZnO/CdS/CuGaSe2/Mo device parameters. The composition of the CdS layers and their thickness were determined using X-ray Fluorescence Analysis. Transmission and reflection measurements performed at 300 K were used for the calculation of absorption and optical band gap energy (Eg). The Eg values of the films varied from 2.41 to 2.46 eV depending on deposition conditions. Cubic phase of the as-grown layers was identified by X-ray diffraction analysis. An improvement in the investigated solar cells efficiency was achieved when the ammonia concentration was increased and the thiourea concentration was reduced, compared to the previously used standard HMI recipe. The influence of the CBD CdS preparation recipe on the ZnO/CdS/CuGaSe2/Mo electrical and photoelectrical properties is discussed.  相似文献   

8.
Ba4Sm9.33Ti18O54-Ag (BST-Ag) composites were prepared by a solid-state ceramic route and its dielectric properties were investigated in the vicinity of percolation threshold. The structure and microstructure of the composites were analyzed by X-ray diffraction along with optical and scanning electron microscopy observations. The effects of silver content and frequency on the dielectric properties of BST-Ag composites were studied using a LCR meter. The relative permittivity (εr) of the composite increases with silver content below the percolation limit and is in agreement with power law. A 0.14 volume fraction of silver loading increases the relative permittivity of the composite from 50 to 450 at 10 kHz. Addition of 0.15 volume fraction of silver increases the relative permittivity of the composite in the order of 105. It is found that the giant relative permittivity is almost constant for frequencies from 1 kHz to 1 MHz. This high εr composite offers the perspectives for application in electromechanical devices.  相似文献   

9.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

10.
Intercalation of cis-but-2-enedioate anion or trans-but-2-enedioate anion into the layered double hydroxide (LDH), [Mg0.66Al0.34(OH)2]Cl0.34·0.43H2O was carried out by the method of ion-exchange procedures. Selective reaction was observed in competitive experiments involving an equal concentration pairs of acids. The trans-but-2-enedioate anion is preferentially intercalated into the Mg-Al-LDH. The obtained intercalation compounds were characterized by X-ray diffraction, infrared and thermogravimetry techniques. The charge density on the oxygens of each of the carboxylate groups for both anions was investigated utilizing ab initio (HF/6-31G) method by G98w. From the X-ray diffraction data, the guest size and the charge density of the oxygen of the guest, the orientation of both anions between the layers was determined and the preferential intercalation mechanism was studied. These results indicate the possibility of a molecular recognition ability of LDHs.  相似文献   

11.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

12.
In this paper we studied the effects of Bi2O3 and PbO addition on BiFeO3 (BFO) ceramic matrix. The structural, dielectric and magnetic properties of fifteen BFO samples were discussed in view of possible applications in RF and microwave devices. The present work also reports the preparation of the samples. Polyvinyl alcohol (PVA) and tetraethyl orthosilicate (TEOS) were also added as a binder in the fabrication procedure. The samples have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and magnetic hysteresis measurements. Further, a study based on impedance spectroscopy also has been done. Dielectric permittivity (ε′) and dielectric loss (tan δ) were measured at room temperature in the frequency range 100 Hz-10 MHz, as well as a.c. conductivity. The -Im[Z(f)] versus Re[Z(f)] plot has been obtained. The samples were investigated in view of possible applications like miniaturized filters, diplexers and dielectric resonator antennas (DRA). In the RF and MW frequency region, the application of magneto-dielectric and multiferroic perovskite composite materials is desirable for the miniaturization of components.  相似文献   

13.
Fabrication and characterization of C60/tetrathiafulvalene solar cells was carried out. Photovoltaic properties of bulk-hetero and heterojunciotn solar cells were investigated by light-induced current vs. voltage curves and optical absorption. Transmission electron microscopy (TEM) image, X-ray and electron diffraction showed that the bulk-heterojunction film had the microstructure of C60 crystal structure with TTF phase. Heat treatment of the heterojunction film with tetraethylsilane improved the photovoltaic performance, yielding a slight increase of conversion efficiency. This result would be originated in improvement of microstructure around inner interface between the both crystal phases. Mechanisms of the photovoltaic properties were discussed on the basis of the experimental results.  相似文献   

14.
Using either single crystalline, epitaxially grown p-type CuGaSe2 (CGSe) films in Schottky diodes or polycrystalline p-CuGaSe2/n-CdS single-junction solar cells, we employed thermal admittance spectroscopy (TAS) to gain insight into the electronic transport mechanisms of CGSe. In both types of devices, the capacitance decreases about 50% to its geometrical value in a frequency dependent step between 250 and 150 K. For the Schottky diodes, this capacitance step reflects the response of the shallowest acceptors whose energy level is located 150 meV above the valence band. In the solar cells, a comparable response occurs but is superposed by carrier freeze-out outside the space-charge region.  相似文献   

15.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

16.
Bulk heterojunction (BHJ) solar cells were fabricated based on blended films of a porphyrin derivative 5,10,15,20-Tetraphenyl-21H,23H-porphine zinc (ZnTPP) and a fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as the active layer. The ZnTTP:PCBM BHJ solar cells were fabricated by spin-casting of the blended layer. The weight ratios of ZnTPP and PCBM were varied from 1:1 to 0:10. The electronic and optical properties of each cell were investigated. Optical density (OD) of the blended film for each cell was extracted from its reflection and transmission curves. OD and average absorption coefficients of the active materials were used to determine film thicknesses. Absorption spectra of each component material were compared with the spectra of the blended films. Current density–Voltage (JV) characteristics were recorded under dark as well as under the illumination of AM 1.5G (1 sun) solar spectrum. The BHJ solar cell with ZnTPP:PCBM ratio of 1:9 showed the best performance . The values of RR, VOC , JSC , FF and η for these ratios were 106.3, 0.4 V, 1.316 mA/cm2, 0.4 and 0.21%, respectively. The cross-section of this device using SEM was also examined.  相似文献   

17.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

18.
The electronic structure and magnetic properties of the Ti2CoB Heusler compound with a high-ordered CuHg2Ti structure were investigated using the self-consistent full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). Spin-polarized calculations show that the Ti2CoB compound is half-metallic ferromagnetic with a magnetic moment of 2 μB at the equilibrium lattice constant, a=5.74 Å. The Ti2CoB Heusler compound is ferromagnetic below the equilibrium lattice constant and ferrimagnetic above the equilibrium lattice constant. A large peak in majority-spin DOS and an energy gap in minority-spin DOS are observed at the Fermi level, yielding a spin polarization of 100%. A spin polarization higher than 90% is achieved for a wide range of lattice constants between 5.6 and 6.0 Å.  相似文献   

19.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

20.
Regularities of lattice constant in ideal perovskites are investigated by using a total of 132 ABX3-type compounds, including oxides and halides. Two atomic properties; the sum of ionic radius of B and X atoms and the well known ‘tolerance factor’ (which is a function of ionic radius of A, B and X), were found very effective in reproducing the measured lattice constant through a linear combination of these two parameters (R2=0.995). It is further indicated that these two parameters are linked to the crystal features of perovskite. The average error limits in predicting lattice constant, by using this empirical equation, are expected within 0.63%. It may be useful to design new substrates/buffer materials for compound semiconductor epitaxy, in which there is a requirement of lattice match between them and adjacent layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号