首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuIn1−xGaxSe2 (CIGS) thin films are being prepared by selenization of Cu-In-Ga precursors using diethylselenide, (C2H5)2Se, (DESe) as selenium source in place of H2Se gas because of lower toxicity and ease of handling. Rough estimates indicate that selenization process using DESe would cost approximately same or slightly less compared to that using H2Se. Price of DESe per mole is approximately five times that of H2Se. However, partial pressure of DESe, which reflects source material consumption, is approximately three to four times less than that of H2Se, due to higher decomposition rate of DESe compared to that of H2Se. The actual DESe consumption would be four to ten times less compared to that of H2Se. A selenization set-up using DESe as selenium source has been designed, fabricated and installed at FSEC Photovoltaic Materials Lab. Initial characterization of CIGS thin films have been carried out using electron probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy, secondary ion mass spectroscopy and Auger electron spectroscopy. EPMA showed elemental ratios of film to be near stoichiometric composition CuInSe2 with very low gallium content mainly because of tendency of gallium to diffuse towards back contact. XRD data shows formation of high crystalline CuInSe2 phase consistent with the EPMA data.  相似文献   

2.
This paper presents a spectroscopic analysis of the interface between a CuIn1−xGaxS2 (CIGS2) absorber and a CdS buffer layer on stainless steel foil by Auger electron spectroscopy (AES), inverse photoemission spectroscopy (IPES) and photoelectron spectroscopy (PES) such as X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). By combining these spectroscopic techniques, detailed information about the electronic and chemical properties of the CIGS2 surface and the CdS/CIGS2 interface can be obtained. The gallium concentration in CIGS2 films was found to increase continuously towards the Mo back contact. XPS analysis showed the presence of KCO3 on the surface of CdS, deposited on etched and un-oxidized samples indicating diffusion of potassium. No potassium was observed on oxidized as well as samples having thicker CdS (50 nm) indicating the effectiveness of oxidation and chemical bath deposition (CBD) process in cleaning the sample surface effectively. In addition, investigation of the electronic level alignment at the interface has been carried out by combining PES and IPES. Conduction band offset of −0.45 (±0.15) eV and a valence band offset of −1.06 (±0.15) eV were measured. These unfavorable conditions limit efficiency of CIGS2 thin film solar cells.  相似文献   

3.
The overall composition and the compositional profile of the quaternary semiconductor Cu(In1−x,Gax)Se2 (CIGS) have strong effects on the performance of photovoltaic devices based on it. Recent work that has yielded ∼20% efficient solar cells based on CIGS has forced extra attention on quantitative analysis of the absorber layers. In this paper we present details of the procedures used to generate detailed compositional profiles of graded Cu(In1−x,Gax)Se2 thin films by Auger electron spectroscopy (AES) that when integrated, agree quantitatively with inductively-coupled plasma optical emission spectrometry (ICP-OES) data on the same films. The effects of sample rotation during sputter depth profiling on the quantification results are described. Details of the procedures used for the ICP-OES and wavelength-dispersed electron probe microanalysis (EPMA) analyses are also presented. Finally, we show why X-ray microanalysis techniques alone should not be used to argue that specific windows of copper and gallium concentrations can yield high performance devices.  相似文献   

4.
The aim of this work was to study the effect of MoNx film substrates on the structural properties of CuInSe2 films prepared by selenization of metallic Cu-In alloy precursors. MoNx films were prepared by reactive dc-magnetron sputtering. All the CuInSe2 films exhibit single phase chalcopyrite structure with (1 1 2) preferred orientation, which can be explained by the reduction of lattice mismatch between CuInSe2 and MoNx. The bulk composition of selenized CuInSe2 films are near stoichiometric, but the surface composition analysis suggests Cu deficiency on surface area. Furthermore, ordered defect compound, CuIn2Se3.5 is found on the surface of CuInSe2 films. The results will be helpful for fabricating Cd-free ZnO buffer layer CuInSe2 and Cu(In1−xGax)Se2 based thin film solar cells.  相似文献   

5.
Differential scanning calorimetry (DSC) technique was used to study the kinetics of amorphous to crystalline transformation for GaxSe100−x glass system (x=0, 2.5 and 5 at%). The kinetic parameters of GaxSe100−x glass system under non-isothermal conditions are analyzed by the model-free and model-fitting models at different constant heating rates (5-50 K/min). A strong heating rate dependence of the effective activation energy of crystallization was observed. The analysis of the present data shows that the effective activation energy of crystallization is not constant but varies with the degree of crystallization and with temperature as well. The crystallization mechanisms examined using the local Avrami exponents indicate that one mechanism (volume nucleation with one-dimensional growth) is responsible for the crystallization process for heating rates 5-50 K/min for Se glass and two mechanisms (volume nucleation with two- and one-dimensional growth) are working simultaneously during the amorphous-crystalline transformation of the Ga2.5Se97.5 and Ga5Se95 glasses (5-50 K/min). The reaction model that may describe crystallization process of all the compositions of GaxSe100−x glass system is Avrami-Erofeev model (g(α)=[−ln(1−α)]1/n) with n=2 for Se glass. While for Ga2.5Se97.5 and Ga5Se95 glasses, the values of n are equal to 3 and 2 for the heating rates 5-20 and 35-50 K/min, respectively. A good agreement between the experimental and the reconstructed (α-T) curves has been achieved. The transformation from amorphous to crystalline phase in GaxSe100−x glass system demonstrates complex multi-step involving several processes.  相似文献   

6.
Physical properties of In35Sb45Se20−xTex thin films with different compositions (x=2.5, 5, 7.5, 10, 12.5 and 15 at %) prepared by electron beam evaporation method are studied. X-ray diffraction results indicate that the as-evaporated films depend on the Te content and the crystallized compounds consist mainly of Sb2Se3 with small amount of Sb2SeTe2. Transmittance and reflectance of the films are found to be thickness dependent. Optical-absorption data indicate that the absorption mechanism is direct transition. Optical band gap values decrease with increase in Te content as well as with increase in film thickness.  相似文献   

7.
Compositional behavior of Urbach absorption edge is studied as well as the effect of compositional disordering on the parameters of exciton-phonon interaction, phase transition temperatures and electric conductivity in Cu6P(S1−xSex)5Br1−yIy superionic solid solutions. The effect of different types of disordering on the optical absorption processes and specific features of compositional changes in the absorption edge spectra under S→Se and Br→I anion substitution in the mixed crystals are investigated. (x, T) phase diagrams for Cu6P(S1−xSex)5X (X=I, Br) solid solutions are studied.  相似文献   

8.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

9.
Physical properties of polycrystalline samples of CeCuxGa4−x (x = 0.2–1.4), crystallizing in the tetragonal BaAl4-type structure (space group I 4/mmm), were studied by means of X-ray powder diffraction, magnetization, specific heat, electrical resistivity and magnetoresistivity measurements in wide temperature and magnetic fields ranges. The unit-cell volume of the system was found to decrease with increasing x (in total by about 4%) but the magnetic moments of Ce3+ ions remain localized in the whole x-range studied. The alloys exhibit ferromagnetic order at low temperatures, which manifests itself as distinct and relatively sharp anomalies in all the temperature characteristics measured. The ordering temperature decreases with increasing the Cu content from 5.5(1) K for x = 0.2 down to 1.35(5) K for x = 1.4, and the electrical transport properties of the system show some features characteristic of Kondo lattices.  相似文献   

10.
Polycrystalline CuIn1−xGaxTe2 bulk films were synthesized by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te in a vacuum sealed quartz ampoule. The phase structure and composition of the bulk films were analysed by X-ray diffraction and energy-dispersive X-ray analysis, respectively. The bulk samples, of p-type conductivity, are found to be near-stoichiometric, polycrystalline, with tetragonal chalcopyrite structure, predominantly oriented along a direction perpendicular to the (1 1 2) plane. Photoluminescence spectra were recorded at 7 K and 700 mW to characterize the defects and the structural quality. The main peak as a function of composition has been studied.  相似文献   

11.
Structural, electrical and optical properties of Al doped ZnO (Al:ZnO) thin film of various thicknesses, grown by radio-frequency magnetron sputtering system were studied in relation to the application as a window layer in Cu(In1−xGax)Se2 (CIGS) thin film solar cell. It was found that the electrical and structural properties of Al:ZnO film improved with increasing its thickness, however, the optical properties degraded. The short circuit current density, Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the Al:ZnO window layer thickness. Best efficiency was obtained when CIGS solar cell was fabricated with electrically and optically optimized Al:ZnO window layer.  相似文献   

12.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

13.
The substitutional sites of Co2+ ions in Co2+-doped CuG1−xAlxSe2 (including CuGaSe2 where x=0 and CuAlSe2 where x=1) semiconductors are studied by analyzing the composition x dependence of optical spectral parameters reported in the previous literature for these materials. From the studies, we suggest that Co2+ occupy I-group cation site rather than III-group cation site. The suggestion is discussed.  相似文献   

14.
We have investigated the effects of the nitrogen and indium concentrations on the photoionization cross-section and binding energy of shallow donor impurities in Ga1−xInxNyAs1−y/GaAs quantum wires. The numerical calculations are performed in the effective mass approximation, using a variational method. We observe that incorporation of small amounts of nitrogen and indium leads to significant changes of the photoionization cross-section and binding energy.  相似文献   

15.
Superstrate-type Cu(In,Ga)Se2 (CIGS) thin film solar cells were fabricated using Zn1−xMgxO buffer layers. Due to the diffusion of Cd into CIGS during the growth of the CIGS layer, the conventional buffer material of CdS is not suitable. ZnO is a good candidate because of higher thermal tolerance but the conduction band offset (CBO) of ZnO/CIGS is not appropriate. In this study, the Zn1−xMgxO buffer layers were used to fulfill both the requirements. The superstrate-type solar cells with a soda-lime glass/In2O3:Sn/Zn1−xMgxO/CIGS/Au structure were fabricated with different band gap energies of the Zn1−xMgxO layer. The CIGS layers [Ga/(In + Ga)∼0.25] were deposited by co-evaporation method. The substrate temperature during the CIGS deposition of 450 °C did not cause the intermixing of the Zn1−xMgxO and CIGS layers. The conversion efficiency of the cell with Zn1−xMgxO was higher than that with ZnO due to the improvement of open-circuit voltage and shunt resistance. The results well corresponded to the behavior of the adjustment of CBO, demonstrating that the usefulness of the Zn1−xMgxO layer for the CBO control in the superstrate-type CIGS solar cells.  相似文献   

16.
Ternary alloyed CdS1−xSex thin films of variable composition ‘x’ were grown by the simple and economical chemical bath deposition technique. The as-grown thin films were characterized for structural, compositional, surface morphological, optical and electrical studies. The X-ray diffraction (XRD) patterns of the sample indicated that all the samples were polycrystalline in nature with hexagonal structure. Scanning electron microscopy (SEM) micrographs showed uniform morphology with spherical shaped grains distributed over entire glass substrate. EDAX studies confirmed that the CdS1−xSex films were having approximately same stoichiometry initially as well as finally. Room temperature optical measurements showed that band gap engineering could be realized in CdS1−xSex thin films via modulation in composition ‘x’. Electrical resistivity of CdS1−xSex thin films for various compositions was found to be low. The broad and fine tunable band gap properties of ternary CdS1−xSex thin films have potential applications in opto-electronic devices.  相似文献   

17.
Microstructure, phase transformation behavior and dielectric properties of BaTi1−x(Al1/2Nb1/2)xO3 (0.01≤x≤0.40) ceramics were investigated. A high level of (Al1/2Nb1/2)4+ substitution for Ti4+ ions was not conducive to the stability of the perovskite structure and resulted in the formation of BaAl2O4. As x was increased, lattice constants and unit cell volume decreased, reached a minimum at x=0.10 and then increased. The BaTi1−x(Al1/2Nb1/2)xO3 ceramics at room temperature experienced a transformation from ferroelectric to paraelectric phase with increasing (Al1/2Nb1/2)4+ concentration. Meanwhile, permittivity of the BaTi1−x(Al1/2Nb1/2)xO3 ceramics was markedly reduced, while Q value was slightly increased. Frequency dispersion of dielectric peak was obviously increased as x was increased from 0.01 to 0.10. It is of great interest that a dielectric abnormity represented by a broad dielectric peak at 200-400 K was observed for the composition with x=0.40.  相似文献   

18.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

19.
The aim of this work was to study the influence of selenization temperature on the morphological and structural properties of CuIn1−xGaxSe2 (CIGS) polycrystalline thin films prepared by a two-step method. The compound and metallic precursors were deposited sequentially using GaSe, InSe and Cu sources by thermal evaporation. These identical InSe/Cu/GaSe precursors are then selenized with Se vapor in a vacuum system. All the CIGS films showed chalcopyrite structure and presence of secondary phases observed at low temperatures. High temperature treatment led to better crystalline and an increase in grain size. Solar cell devices are fabricated and JV measurements performed under AM1.5 global solar spectra conditions at 25 °C are presented.  相似文献   

20.
Atomistic simulations were performed to investigate the lattice parameters, dielectric constant, and elastic constants of Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures. The calculated lattice parameters and elastic constants are in good agreement with those in available experimental results. The pressure dependence of all studied quantities was investigated. In general, a change in the behavior of all studied quantities is found when the Ga concentration becomes more than that of the aluminum (Al) in Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号