首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Samples of CeIV-substituted bismuth vanadate, formulated as Bi4CexV2−xO11−(x/2)−δ; 0≤x≤0.30, were synthesized by solid-state reactions. The phase structure and electrical conductivity were investigated using X-ray powder diffraction, FT-IR, differential thermal analysis and AC impedance spectroscopy. For a low composition range, two phase transitions, α↔β and β↔γ, were exhibited in which the system mimics in most events the parent compound. Impedance analysis evidenced no relationship between the blocking effect of charge carriers and structural changes at ambient temperatures. However, the temperature dependence of conductivity was correlated with the stability region of various phases within the system.  相似文献   

2.
THz and infrared spectroscopies are widely utilized to investigate the electrodynamic properties of the novel iron-based superconductors in the normal and superconducting states. Besides electronic excitations and correlations, electron-phonon coupling and the influence of magnetism, the experiments yield important information on low-lying excitations and help to clarify the number and symmetry of superconducting gaps. While the experimental data of different groups converge, the interpretation is still under debate. Here we review the status of optical investigations on the superconducting state for the 122 and 11 family of iron pnictides.  相似文献   

3.
Nano-crystallites of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 NASICON type material are prepared by means of solid-state reaction of a stoichiometric mixture after milling it for 22 and 55 h. The milling reduces the average crystallite size of the ceramic to 80 and 60 nm, respectively. Mechanical milling changes structural parameters and the strain induced at the grain-boundaries plays a major role in improving electrical conductivity. An order of magnitude increase in electrical conductivity is observed in the material milled for 55 h compared to the unmilled material, which is also reflected in permittivity loss. Modulus and permittivity representations substantiate the constriction effect of grain-boundaries observed in the complex impedance representation.  相似文献   

4.
Structure and electronic properties of zigzag single-walled carbon nanotubes with multi-dichlorocarbene addition are investigated using self-consistent field crystal orbital method. It is found that the addition can cause large deformation of the tubes and significantly modify the band structures. The addition can even cause semiconductor-metal phase transition. Furthermore, the mobility and conductivity are also calculated using the deformation potential approach for the addition systems.  相似文献   

5.
A comparative study has been carried out on anodes made from carbon nanostructures of five different morphologies—single walled, double walled and multiwalled carbon nanotubes (with two different diameters), and carbon nanofibers. The specific area of the samples of these carbon nanostructures has been determined and their structure and morphology have been characterized by microscopy, X-ray diffraction and Raman spectroscopy. Depending on the morphology and the size of the nanostructures in the anode, the reversible capacity obtained ranges from 450 to 600 mAh g−1 and the coulombic efficiency is in the range of 85–98% after 12 cycles. Increasing the surface area, both inside and outside for the tubes of a nano-size, gives rise to increased number of surface sites, which may be intercalated reversibly leading to increased specific charge capacity. Formation of the solid electrolyte interface layer covers a part of these surface sites as well as results in capacity fading, which also increases with increasing surface area. Increased defect sites responsible for elastic scattering in Raman spectra do not appear to have deciding influence on either enhanced capacity or capacity fading. Nano-sized constituent in the electrode appears to improve mechanical characteristics ensuring good mechanical integrity on cycling and high coulombic efficiency.  相似文献   

6.
The crystals of anilinium nitrate, , were obtained by slow evaporation of an aqueous solution. The crystals belong to the Pbca (no. 61) space group of orthorhombic system, Z=8, a=10.158(2), b=9.277(2), c=16.177(3) Å. Positively charged anilinium cations and anions are present in the structure. Powder FT IR and FT Raman spectra for normal and deuterated samples are discussed with respect to the crystal structure. DSC measurements do not indicate clearly on the occurrence of phase transition in the temperature region 113-293 K.  相似文献   

7.
Lead containing calcium zinc sodium fluoroborate (LCZSFB) glasses doped with different concentrations of trivalent dysprosium ions were prepared and investigated by the XRD, FTIR, optical absorption, photoluminescence and decay curve analysis. The experimentally determined oscillator strengths have been determined by measuring the areas under the absorption peaks and the Judd–Ofelt (J–O) intensity parameters were calculated using the least squares fit method. From the evaluated J–O parameters the radiative transition probability rates, radiative lifetimes and branching ratios were calculated for 4F9/2 excited level. Room temperature photoluminescence spectra for different concentrations of Dy3+-doped LCZSFB glasses were obtained by exciting the glass samples at 386 nm. The intensity of Dy3+ emission spectra increases with increasing concentration of 0.1, 0.25, 0.5 and 1.0 mol% and beyond 1.0 mol% the concentration quenching is observed. The measuring branching ratios are reasonably high for transitions 4F9/26H15/2 and 6H13/2, suggesting that the emission at 484 and 576 nm, respectively, can give rise to lasing action in the visible region. From the visible emission spectra, yellow–blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The lifetimes of 4F9/2 metastable state for the samples with different concentrations were also measured and discussed.  相似文献   

8.
In the recent years, several experiments performed under high magnetic fields (HMFs), at high pressure (HP) and/or at low temperature (LT) have led to spectacular discoveries in condensed matter. In many new systems, although challenging, it is strategic to perform a magneto-optical analysis, to investigate the phonon behavior in the far infrared (IR) domain. By combining HMF and HP in a wide temperature (T) range to perform concurrently IR magneto-optics and ac-magneto-dynamic experiments, it will be possible to achieve unique information on systems and/or new phenomena, almost impossible to obtain with standard spectroscopic methods. Here we present PRESS-MAG-O, a new facility under construction that will perform HP experiments under HMF in a wide T range. The system is expected to be operational by the end of 2008 and will be tested at SINBAD, the IR synchrotron radiation beamline operational since 2001 at DAΦNE (Double Annular Φ-factory for Nice Experiments), the storage ring of the INFN Frascati National Laboratory (LNF). While for IR experiments an interferometer will be used, for the magneto-dynamic experiments a SQUID magnetometer in the 10 Hz-2 KHz frequency range will be utilized. HP will be applied to samples by a Cu-Be diamond anvil cell (DAC), so that the device will be able to collect FTIR spectra and high harmonic ac susceptibility data in a dc magnetic field up to 8 T and to about 20 GPa in a wide temperature range (4.2-200 K).  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) were treated with a radio-frequency discharge. We found that MWCNTs showed opposite trends in electrical conductivity when treated with oxygen and hydrogen plasmas. MWCNTs showed enhanced electrical conductivity when placed at cathode with oxygen plasma treatment, whereas MWCNTs treated at positive column did not show such a trend. In contrast, the conductivity of MWCNTs dropped sharply with hydrogen plasma treatment. The measured conductivity trends of MWCNTs are correlated with observed Raman spectral shift. The possible mechanisms of the change in electrical conductivity in plasma-treated MWCNTs are discussed.  相似文献   

10.
Electronic structures of SrCoOx with x=3, 2.875 and 2.75 were calculated by DFT technique in SLDA approximation. Two kinds of oxygen vacancy ordering with energies of 0.22 and 0.01 eV lower in comparison with random vacancy distribution were revealed. The transition between these ordered vacancy systems with the activation energy 0.34 eV can be a step in the ionic conductivity mechanism. The calculated ion charges, magnetic moments and electron density of states were used to analyze chemical bonding in the crystals. All calculated compounds have metal electronic conductivity.  相似文献   

11.
A short-range force constant model has been applied for the first time to investigate the phonons in α-NaAlH4 having body centered tetragonal Scheelite structure .The normal symmetry coordinates for the Scheelite structure were computed to investigate the phonons at the zone center. The phonons for α-NaAlH4 have been calculated involving five stretching and two bending force constants .The calculated Raman frequencies exhibit good agreement with the available measured values. The infrared frequencies have been assigned proper modes for the first time.  相似文献   

12.
We have performed high-resolution angle-resolved photoemission spectroscopy on hole-doped high-Tc cuprate superconductors (HTSCs) to study many-body interaction and the universality of low-energy excitation gap. In Bi2Sr2CaCu2O8 (Bi2212), we observed a kink in the dispersion in the off-nodal region in the superconducting state, which remarkably weakens on impurity substitution. We also find that the appearance of the kink in the off-nodal region is a common feature of Bi2212 and La1.85Sr0.15CuO4 (LSCO), while the energy scale is remarkably different between two compounds (70 and 20 meV). We discuss universality of the kink in dispersion in the hole-doped HTSCs in terms of the coupling of electrons with spin fluctuations.  相似文献   

13.
The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.  相似文献   

14.
In this contribution we up-to-date the status of the PRESS-MAG-O device, a new instrument under commissioning at the INFN designed to perform magnetic and spectroscopic experiments on samples under extreme conditions. The system has been designed to work at SINBAD, the IR synchrotron radiation beamline operational at DAΦNE. The instrument, that is the result of a significant R&D, will allow performing concurrent high harmonic ac magnetic susceptibility measurements and magneto-optic experiments on a sample under high pressure, with a variable DC magnetic field in a wide temperature range. The vacuum vessel has been designed with four crossing windows to allow optical measurements in the transmission geometry on the sample loaded inside a Diamond Anvil Cell. A new superconducting miniaturized micro-SQUID gradiometer has been also developed to detect the low magnetic signal of the sample and a customized optical system has also been designed to perform IR synchrotron radiation experiments.  相似文献   

15.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

16.
We have studied the electronic structures of URu2Si2 employing ultrahigh-resolution laser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-order transition, and the emergence of a narrow band is clearly observed near the Fermi level for both (π,0) and (π,π) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-order transition in URu2Si2.  相似文献   

17.
We perform the numerically exact diagonalization calculation for small Cu-O clusters with a Ni impurity site, representing the Ni-substituted cuprate, to examine the single-particle excitation spectra as well as the resonant inelastic X-ray scattering (RIXS) spectra. We clarify relations between low-energy electronic structures near the Ni site and excitations seen in the RIXS spectra.  相似文献   

18.
A short range force constant model has been applied for the first time to investigate the phonons in NdMnO3 perovskite in the orthorhombic phase. The calculations with nine stretching and eight bending force constants provide good agreement for the observed Raman frequencies. The infrared frequencies have been assigned for the first time.  相似文献   

19.
We report an angle-resolved photoemission spectroscopy study of electronic structures of Eu1−xLaxFe2As2 single crystals, in which the spin density wave transition is suppressed with La doping. In the paramagnetic state, the Fermi surface maps are similar for all dopings, with chemical potential shifts corresponding to the extra electrons introduced by the La doping. In the spin density wave state, we identify electronic structure signatures that relate to the spin density wave transition. Bands around M show that the energy of the system is saved by the band shifts towards high energies, and the shifts decrease with increasing doping, in agreement with the weakened magnetic order.  相似文献   

20.
We report angle-resolved photoemission spectroscopy studies on Sr2RuO4. We observe multiple-bosonic mode coupling in the α and β band dispersions. To extract the self-energy from the data for which the usual fitting methods do not work well, we propose a scheme that exploits the relation between the spectral intensity and self-energy, termed as relative self-energy. The relative self-energy obtained in that way contains important features of the self-energy. We observe not only the features that can be obtained from the band dispersions but also additional features that were not seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号