首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Homogeneous CaO-P2O5 and Cu2O-CaO-P2O5 glasses were prepared using a melt-quenched method under controlled conditions. The binary glasses were found to be colourless and transparent while the ternary glasses changed from light green to dark green as the Cu2O content increased. From the absorption edge studies, the values of the optical band gap, Eopt and Urbach energy, ΔE were evaluated. The position of the absorption edge and hence the optical band gap were found to depend on the glass composition. Analysis of the optical band gap shows that for the binary glasses, the value increases as the content of CaO decreases, while for the ternary glasses, the value of the optical band gap increases as the content of the Cu2O decreases. The density of the glasses was also measured and was found to increase with the increase in CaO and Cu2O contents.  相似文献   

2.
To investigate the effect of grain boundaries on paraconductivity of YBa2Cu3Ox, melt-textured and c-axis oriented thin films with controlled grain boundaries (superconducting transition width, ΔT, varying between 0.54 and 2.85 K) were prepared, and dc-conductivity has been measured as a function of temperature. In the logarithmic plots of excess-conductivity (Δσ) and reduced temperature (?), starting from low values of ?, we have observed three different regions namely critical region, mean field region and short wave fluctuation region. A correlation is observed between the range of critical region and ΔT, which is found to increase with ΔT. While for ΔT values smaller than 2.5 K only static critical region is observed, for higher ΔTs both static and dynamic critical regions are observed. In the mean field region a crossover from 3D to 2D was observed for all the samples. At ? values larger than 0.24, the excess-conductivity decreased sharply as ?−3, which suggested the existence of the short wave fluctuations.  相似文献   

3.
Na2O–PbO–Al2O3–B2O3 (NPAB) glasses mixed with different concentrations of WO3 (ranging from 0 to 2.5 mol%) are synthesized by conventional melt quenching method. The samples are characterized by X-ray diffraction (XRD), optical absorption, Electron paramagnetic resonance (EPR) and Fourier transform infrared (FT-IR) spectroscopic techniques. Glass formation is confirmed by X-ray diffraction spectra. The optical absorption spectra of these glasses exhibited a predominant broad band peak at about 850–870 nm is identified due to dxydx2y2 transition of W5+ ions. From the optical absorption spectral data, optical band gap (Eopt) and Urbach energy (ΔE) are evaluated. From EPR spectra the strength of the signal is increased and hyperfine splitting is resolved with increasing concentration of WO3 in the glass matrix. The FT-IR spectral studies have pointed out the existence of conventional BO3, BO4, B–O–B, PbO4, WO4 and WO6 structural units of these glasses. Various physical properties and optical basicity are also evaluated with respect to the concentration of WO3 ions.  相似文献   

4.
The chemical bond between atoms in metal oxides is expressed in an energy scale. Total energy is partitioned into the atomic energy densities of constituent elements in the metal oxide, using energy density analysis. The atomization energies, ΔEM for metal atom and ΔEO for O atom, are then evaluated by subtracting the atomic energy densities from the energy of the isolated neutral atom, M and O, respectively. In this study, a ΔEO vs. ΔEM diagram called atomization energy diagram is first proposed and used for the understanding of the nature of chemical bond in various metal oxides. Both ΔEM and ΔEO values reflect the average structure as well as the local structure. For example their values vary depending on the vertex, edge or face sharing of MO6 octahedron, and also change with the overall density of binary metal oxides. For perovskite-type oxides it is shown that the ΔEO value tends to increase by the phase transition from cubic to tetragonal phase, regardless of the tilting-type or the 〈1 0 0〉 displacement-type transition. The bond formation in spinel-type oxides is also understood with the aid of the atomization energies. The present approach based on the atomization energy concept will provide us a new clue to the design of metal oxides.  相似文献   

5.
Series of ternary glass systems namely, Na2O, B2O3, and RO (R=Ba or Mg) doped with TiO2 are synthesized. The present glasses are dictated by requirement for a small refractive index and a small nonlinear coefficient needed for waveguide and laser fabrication requirements. The effect of MgO and BaO as alkaline earth metals on the optical properties of the glass systems is investigated. The dependence of the refractive index and extinction coefficient dispersion curves on composition is carried out over a wavelength range of 0.3-. Applying a genetic algorithm technique, the parameters of Sellmeier dispersion formula that fit index data to accuracy consistent well with the measurements are given. The zero material dispersion-wavelength (ZMDW) and group velocity are also determined using the refractive index data. The Fermi level is calculated exploiting the extinction coefficient dispersion curves. The absorption coefficient, both direct and indirect optical energy gaps, and Urbach energy are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as coordination number, electronic polarizability, field strength of cations, bridging and nonbridging oxygen, and optical basicity are discussed in accordance with the obtained index data. IR spectroscopy is used as a structural probe of the nearest-neighbor environment in the glass network.  相似文献   

6.
Differential thermal analysis, and the 35Cl Nuclear Quadrupole Resonance frequency (νQ) and spin-lattice relaxation time (T1) were measured as a function of temperature in p-chlorofluorobenzene. Three different phases were found according to the thermal history of the sample and only one was stable up to the melting point. In one of the phases, the presence of molecular reorientations can be inferred from T1 data with activation energy of 3.7 kcal/mol. A value of 13.9 kJ/mol for the fusion heat of this compound has been obtained.  相似文献   

7.
The effect of γ-radiation dose on the optical spectra and optical energy gap (Eopt.) of Se76Te15Sb9 thin films was studied. The dependence of the absorption coefficient (α) on the photon energy () was determined as a function of radiation dose. The films show indirect allowed interband transition that is influenced by the radiation dose. Both the optical energy gap and the absorption coefficient were found to be dose dependent. The indirect optical energy gap was found to decrease from 1.257 to 0.664 eV with increasing the radiation dose from 10 to 250 krad, respectively. The results can be discussed on the basis of γ-irradiation-induced defects in the film. The width of the tail of localized states in the band gap (Ee) was evaluated using the Urbach edge method. The refractive index (n) was determined from the analysis of the transmittance and reflectance data. Analysis of the refractive index yields the values of high frequency dielectric constant (ε) and the carrier concentration (N/m*). The dependence of refractive index on the radiation dose has also been discussed. Other optical parameters such as real and imaginary parts of the dielectric constant (ε1, ε2) and the extinction coefficient (k) have been evaluated. It was found that the spectral absorption coefficient is expected to a suitable control parameter of γ-irradiation-sensitive elements of dosimetric systems for high energy ionizing radiation (0.06-1.33 MeV).  相似文献   

8.
Temperature behaviour of optical absorption edge in Cu6PS5I1−xBrx mixed crystals is studied in the interval 77-325 K. It is shown that the absorption edge has Urbach shape in the 215-325 K temperature interval. The influence of temperature and compositional disorder on the Urbach absorption edge parameters is presented. The mechanism of the Urbach bundle formation and the effect of I→Br anionic substitution on the exciton-phonon interaction parameters is elucidated.  相似文献   

9.
Polyvinyl alcohol (PVA) films doped with europium chloride (EuCl3) have been prepared by casting from their aqueous solutions. The phase transitions and thermal decomposition behavior of the prepared samples were investigated by thermal analysis and the interactions between the host PVA and Eu3+ were examined by FTIR spectroscopy. The optical absorption was recorded at room temperature in the range of 190-1000 nm. From the absorption edge studies, the values of the Urbach energy (Ee) were found to be 0.56 eV in case of the pure polymer; however, its value increased to be in the range of 1.21-1.75 eV. These energy values indicate that the model based on electronic transitions between localized states is not preferable and transitions are made between band tails. Optical parameters such as refractive index and complex dielectric constant have been determined. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. Color properties of the prepared samples are discussed in the framework of CIE L?u*v* color space. The prepared samples have been used as catalysts in the photocatalytic degradation of p-nitrophenol (PNP) in aqueous solution under UV light irradiation using H2O2 as oxidizing agent. The catalytic activity of the Eu-polymer towards the photodegradation of PNP greatly increased after doping with Eu3+ ions. The highest catalytic activity was noticed at the optimum pH value of 5.5.  相似文献   

10.
The influence of highly diluted impurities (Cu, Mn, Fe, Ni) on the temperature (T) dependence of the specific heat (cp) of l-arginine phosphate monohydrate (LAP) was investigated in the temperature range 1.8-300 K. The doped samples yielded values for cp in excess to those obtained for a pure LAP sample. The melting temperatures (Tm≈420 K) obtained by differential scanning calorimetry for pure and doped LAP samples were found not to be significantly affected by the impurities. The T-dependence of cp was fully accounted for by taking into consideration the Debye contribution, an Einstein term and a contribution due to both Frenkel and Schottky defects. The model fit all cp versus T data using a single value for both the Debye (θD=160 K) and the Einstein (TE=376.8 K) temperatures, and for the energy (εd=157.9 meV) required to create the defects.  相似文献   

11.
The interaction of vibration and rotation is considered in the computation of the intensities of rotational lines in the first overtone bands of axially symmetric molecules of the group C3v. The calculation utilizes the contact transformation method through first order of approximation as outlines by Hanson and Nielsen. General formulas for the intensities of the lines in the first overtone bands 2νn and 2νm are obtained, where n and m denote normal modes of species A1 and E, respectively. It is found that to this order of approximation the usual selection rules ΔJ = 0, ±1 and ΔK = 0 are observed for the parallel overtone band 2νn. For the overtone band 2νm, the selection rules are more complicated, being ΔJ = 0, ±1; Δlm = 0 and ΔK = 0, Δlm = ±2 and ΔK = ?1, or Δlm = ±2 and ΔK = ±2.  相似文献   

12.
We study the two-dimensional quantum Heisenberg antiferromagnet on the square lattice with easy-axis exchange anisotropy by means of Green’s function approach within random phase and Callen’s approximations. The Néel temperature TN, energy gap w0 and staggered magnetization m are calculated. The theoretical predictions of TN and w0 for K2NiF4, Rb2MnF4, K2MnF4, Rb2MnCl4 and (CH3NH3)2MnCl4 fit well to the measured values. The power law behavior of is also investigated. The exponents β and ν for K2NiF4 are in excellent agreement with the experimental results.  相似文献   

13.
The effects of polymers doping on irreversibility field (Hirr) and critical current density (Jc) of MgB2 have been investigated in this work. It is found that both Jc, and Hirr, are improved by doping at relative lower temperature region. The JcB curves of all samples studied in this work are well fitted using Jc(B) formula in percolation model. The values of upper critical field anisotropy (γ) are obtained from the fitting result at various temperatures. It is observed that values of γ for polymers doping samples are reduced at these temperatures. This is considered to be responsible for the enhancement of values of Jc for doped samples. Moreover, the percolation threshold, pc, is found to be enhanced with increasing temperature. It is believed that the grain boundary pinning is still dominating in MgB2, while the deviation of experimental data from the theoretical values is due to the percolation of suppercurrent in polycrystalline MgB2.  相似文献   

14.
A theoretical method for studying the inter-relation between electron and molecule structure is proposed on the basis of the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for d5 configuration ion in a trigonal ligand-field. As an application, the local distortion structure of (FeCl6)3- coordination complex for Fe3+ ions doped into CdCl2 is investigated. Both the second-order zero-field splitting parameter and fourth-order zero-field splitting parameter are considered simultaneously in the structural investigation. By diagonalizing the complete energy matrices, the local structure distortion parameters ΔR=−0.24 Å, Δθ=2.137° at 26 K and ΔR=−0.203 Å, Δθ=2.515° at 225 K for Fe3+ ions in CdCl2 are determined. These results elucidate a microscopic origin of various ligand-field parameters which are usually used empirically for the interpretation of electron paramagnetic resonance results. It is found that the theoretical results are in good agreement with the experimental values.  相似文献   

15.
The optical and acoustic properties of tellurite glasses in the system TeO2/ZrO2/WO3 have been investigated. The refractive index at different wavelengths and the optical spectra of the glasses have been measured. From the refractive index and absorption edge studies for prepared glasses, the optical parameter viz; optical band gap (Eopt), Urbach energy, (ΔE), dispersion energy, Ed, and the average oscillator energy, E0, have been calculated. Sound velocities were measured by pulse echo technique. From these velocities and densities values, various elastic moduli were calculated. The variations in the refractive index, optical energy gap and elastic moduli with WO3 content have been discussed in terms of the glass structure. Quantitatively, we used the bond compression model for analyzing the room temperature elastic moduli data. By calculating the number of bonds per unit volume, the average stretching force constant, and the average ring size we can extract valuable information about the structure of the present glasses.  相似文献   

16.
Two previous models used with success in Cu-III-VI2 semiconductors have been employed to study the temperature dependence of the Urbach energy in ordered compounds Cu-III3-VI5 and Cu-III5-VI8. The model which contains two variable parameters seems to explain better the data over the whole temperature range studied. However, the ordered vacancy or the donor acceptor defect pair in the cation sublattice provides new features in these compounds that need further study.  相似文献   

17.
The magnon energy bands are studied for a four-layer ferromagnetic superlattice, with regard to the effects of the competition between the anisotropy and the spin quantum number. A special attention is also paid on the effects of the symmetry of the system. It is found that three modulated energy gaps exist in the magnon energy band along Kx direction perpendicular to the superlattice plane. The magnetic anisotropy affects significantly the magnon energy gaps. The zero energy gap Δω23 correlates with the conditions between anisotropy constants, D1+D3=D2+D4 and D1=D3 (or D2=D4), while the disappearance of the magnon energy gaps Δω12 and Δω34 corresponds to a translational symmetry of x-direction in a unit cell. When the parameters of the system deviate from these conditions, the energy gaps Δω12, Δω23 and Δω34 become larger. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gaps Δω12 and Δω23. When the symmetry of the system is higher, the competition can achieve a balance to cause the zero energy gap.  相似文献   

18.
The catalytic properties and reduction behavior of mixed metal oxides with nominal compositions of LaxTh1−x(VO3−δ)4, where 0.0 ≤ x ≤ 1.0, have been investigated as a function of the value of x. These compositions were synthesized by ceramic route and characterized using powder X-ray diffraction, differential thermal analysis, and temperature-programmed reduction/oxidation/desorption techniques. The substituted samples were comprised of two distinct phases, one corresponding to tetragonal thorium metavanadate with partial substitution at A-sites, i.e. LaxTh1−x(VO3−δ)4, and the other a new phase identified as LaV4O11+δ. Both these phases exhibited considerable oxygen non-stoichiometry, depending upon the extent of substitution. Nevertheless, no significant change was observed in their respective crystal symmetry. Further, the substituted samples showed more reproducible redox behavior and also an improved catalytic activity for CO oxidation reaction. A definite correlation is found to exist between the micro-structural defects generated in the above-mentioned two phases because of the oxygen ion vacancies, resultant enhancement in thermal diffusitivity of lattice oxygen, and finally the catalytic activity of the substituted mixed oxides. It is envisaged that a kind of synergism between the micro-structural defects existing in the two inter-grown phases generated simultaneously during the synthesis may control the catalytic properties of composite metal oxide systems.  相似文献   

19.
The effect of structural disorder on the width of the Urbach edge E0, the energy band gap EG and dEG/dT in hydrogenated a-Si has been analysed in terms of a simple structural disorder model and has been found to be in satisfactory agreement with the experimental data.  相似文献   

20.
The ν5 and ν3 Raman bands of CH2D2 have been recorded with a resolution of 0.35 cm?1. The ν3 state is well known from infrared studies. Three hundred twenty-nine transitions of the ν5 band were analyzed, assuming an unperturbed upper state, giving a standard deviation on the fit of the upper-state energies of 0.037 cm?1, The constants A, B, C, ΔJ, ΔJK, and ΔK differed significantly from the ground-state values, and ν5 was determined as 1331.41 ± 0.05 cm?1. This work represents the first complete analysis of the fine structure of a rotation-vibrational Raman band for an asymmetric rotor. The ν5 state could not be analyzed in infrared so this investigation, once more, demonstrates the usefulness of the Raman method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号