共查询到20条相似文献,搜索用时 0 毫秒
1.
Two previous models used with success in Cu-III-VI2 semiconductors have been employed to study the temperature dependence of the Urbach energy in ordered compounds Cu-III3-VI5 and Cu-III5-VI8. The model which contains two variable parameters seems to explain better the data over the whole temperature range studied. However, the ordered vacancy or the donor acceptor defect pair in the cation sublattice provides new features in these compounds that need further study. 相似文献
2.
The correlations between the electronic polarizability, determined from Clausius-Mosotti equation based on dielectric constant ε, and the lattice energy density u have been established for ANB8-N crystals, such as the systems of rock salt crystals (group I-VII, II-VI) and tetrahedral coordinated crystals (group II-VI, III-V). For the ANB8-N crystals systems, our present conclusions suggest that lattice energy density u decreases exponentially with increasing electronic polarizability, and the normal mathematical expression between lattice energy density u and electronic polarizability is u = pαq, p and q depend on the type of crystals. For the same cation binary ANB8-N crystals systems, curve fitting equations have been obtained, and the relevant squares of the correlation coefficient R2 are larger than 0.99, which show all lattice energy density u are in good exponential relation with electronic polarizability. These empirical equations will give more information on calculating lattice energy or electronic polarizability. New data of lattice energy have been calculated on the above equation u = pαq, and a good linear trend in the calculating values along with the Zhang’s values has been obtained. 相似文献
3.
First-principles plane-wave ultrasoft pseudopotential method within local density approach (LDA) has been used to study three possible vacancy-defect models for non-stoichiometric lithium niobate (LiNbO3): (1) the oxygen-vacancy model , (2) the niobium-vacancy model , and (3) the lithium-vacancy model . The corresponding formation energies are obtained via energy minimization of a supercell. In Nb-rich environment, the calculated defect formation energies, both under oxidation and reduction conditions, show little effect on the intrinsic defect structures. We find that the lithium vacancy model has the most stable configuration in the non-stoichiometric lithium niobate crystals. Our calculations also show that the formation of any type of neutral defects and Frenkel pairs in a Nb-rich environment is difficult. 相似文献
4.
V. Kumar A.K. Shrivastava Vijeta Jha 《Journal of Physics and Chemistry of Solids》2010,71(11):1513-1520
Using the plasma oscillations theory of solids, simple relations have been proposed for the calculation of bulk modulus (B) and microhardness (H) of group IV, II-VI, III-V, I-III-VI2 and II-IV-V2 semiconductors with tetrahedral structure. We find that B=K1 (?ωp)2.3333 and H=K2 (?ωp)2.3333−K3, where K1, K2 and K3 are the constants. The numerical values of K1, K2 and K3 are respectively, 0.141, 0.036 and 12.895 for group IV, 0.109, 0.0037 and 0.782 for II-VI, 0.125, 0.0202 and 5.743 for III-V, 0.109, 0.0065 and 1.160 for I-III-VI2, and 0.125, 0.0359 and 15.310 for II-IV-V2 semiconductors. The calculated values of B and H are compared with the experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them. 相似文献
5.
First-principles calculations, which is based on the plane-wave pseudopotential approach to the density functional perturbation theory within the local density approximation, have been performed to investigate the structural, lattice dynamical, and thermodynamic properties of SiC, GeC, and SnC. The results of ground state parameters, phase transition pressure and phonon dispersion are compared and agree well with the experimental and theoretical data in the previous literature. The obtained phonon frequencies at the zone-center are analyzed. We also used the phonon density of states and quasiharmonic approximation to calculate and predict some thermodynamic properties such as entropy, heat capacity, internal energy, and phonon free energy of SiC, GeC, and SnC in B3 phase. 相似文献
6.
Optical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2–6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct band gap transitions with energy 1.53 eV. Wemple–DiDomenico and Spitzer–Fan models were used to find the oscillator energy, dispersion energy, zero-frequency refractive index and high-frequency dielectric constant values. Structural properties of the CuIn5S8 crystals were investigated using X-ray diffraction and energy dispersive spectroscopy analysis. 相似文献
7.
N.V. Joshi Jorge Luengo Silvana Alvarez J. Martin 《Journal of Physics and Chemistry of Solids》2005,66(11):2011-2014
[ ]Cd1−x Mnx Ga2S4 is a semimagnetic semiconductor and it has revealed an exceptional property namely ‘optical activity‘. Therefore, a spectroscopic investigation of chiral absorption bands has been carried out with the view to examine the role of d*-d states of manganese atoms. It has been found that inner transitions of Mn++ dominate the spectral region with a special feature, indicating that these transitions show the presence of a substantial contribution from the magnetic dipole moment which rotates the electric vector of the incident polarized radiation. The origin is associated to the lack of a symmetry center caused by the ordered vacancies in this defect compound. 相似文献
8.
M. Kranj?ec I.P. Studenyak V.S. Dyordyay 《Journal of Physics and Chemistry of Solids》2004,65(5):1015-1020
Temperature behaviour of optical absorption edge in Cu6PS5I1−xBrx mixed crystals is studied in the interval 77-325 K. It is shown that the absorption edge has Urbach shape in the 215-325 K temperature interval. The influence of temperature and compositional disorder on the Urbach absorption edge parameters is presented. The mechanism of the Urbach bundle formation and the effect of I→Br anionic substitution on the exciton-phonon interaction parameters is elucidated. 相似文献
9.
We explore the phenomenon of tunneling in single carrier 2-D quantum dot by quantum adiabatic switching route. The confinement in the y-direction is kept harmonic which ensures that tunneling is allowed only along the x-direction. The harmonic confinement potential is kept fixed and a constant external magnetic field is applied along the z-direction. The growth of probability density in the classically forbidden zones and tunneling current are monitored critically which reveals how tunneling significantly depends on the barrier parameters. The efficacy of the switching function in enforcing adiabaticity of the evolution is demonstrated. The effective mass, barrier width, and height emerge as important control parameters. 相似文献
10.
W. Luo J. Souza de Almeida R. Ahuja 《Journal of Physics and Chemistry of Solids》2008,69(9):2274-2276
We have calculated the electronic structure of CsBi4Te6 by means of first-principles self-consistent total-energy calculations within the local-density approximation using the full-potential linear-muffin-tin-orbital method. From our calculated electronic structure we have calculated the frequency dependent dielectric function. Our calculations shows that CsBi4Te6 a semiconductor with a band gap of 0.3 eV. The calculated dielectric function is very anisotropic. Our calculated density of state support the recent experiment of Chung et al. [Science 287 (2000) 1024] that CsBi4Te6 is a high performance thermoelectric material for low temperature applications. 相似文献
11.
S.M. Wasim L. Essaleh G. Marín J. Leotin 《Journal of Physics and Chemistry of Solids》2005,66(11):1887-1890
The Hall coefficient RH of n-type CuInSe2 single crystals is measured between 10 and 300 K in pulsed magnetic field up to 35 T. The threshold field Bth, above which the magnetic freezeout starts to occur, varies linearly with temperature. From the analysis of the temperature dependence of electron concentration in the activation regime above 100 K at different field values, it is established that the density of states effective mass is independent of the magnetic field B and the activation energy ED, above around 6 T, varies as B1/3. Similar B1/3 dependence of the magnetoresistance in the high magnetic field regime, reported earlier in the same material, suggests that theoretical work that could explain this coincidence is needed. 相似文献
12.
Xujie Li Qiuhua Nie Tiefeng Xu Xianghua Zhang 《Journal of Physics and Chemistry of Solids》2007,68(8):1566-1570
A serials of Ho3+/Yb3+ co-doped tellurite glasses by pumping 970 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Two intense emission bands were observed in Ho3+/Yb3+ co-doped tellurite glasses centered at 549 and 664 nm corresponding to Ho3+: 5S2(5F4)→5I8 and 5F5→5I8 transitions, respectively. The upconversion intensities of red and green emissions in Ho3+/Yb3+ co-doped glasses were enhanced largely when increasing Yb2O3 content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. The energy transfer coefficients were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD3 and CD4 were CD2=5.0×10−18 cm3/s, CD3=1.5×10−17 cm3/s, CD4=9.0×10−17 cm3/s. 相似文献
13.
N.N. Syrbu L.L. Nemerenco V.E. Tezlevan 《Journal of Physics and Chemistry of Solids》2005,66(11):1974-1977
Exciton spectra are studied in CuGaXIn1−XS2 solid solutions by means of photoreflectivity and wavelength modulation spectroscopy at liquid nitrogen temperature. The exciton parameters, dielectric constants, and free carrier effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The crystal field and spin orbit valence band splitting is calculated as a function of X taking into account the energy position of excitonic lines. The energy band structure of CuGaXIn1−XS2 and CuGaXIn1−XSe2 compounds is derived from optical spectra at photon energies higher than the fundamental band gap. The energies of optical transitions are tabulated for X values from 0 to 1. 相似文献
14.
P.C. Ricci R. Corpino M. Marceddu I.M. Tiginyanu 《Journal of Physics and Chemistry of Solids》2005,66(11):1950-1953
The Silver Gallium Sulfide (AgGaS2) ternary compound is a wide bandgap semiconductor (about 2.7 eV) whose photoluminescence properties are characterized by excitons and donor-acceptor pairs recombinations. We have performed photoluminescence (PL) measurement exciting with the third harmonic (3.5 eV) of a Nd:YAG laser from room temperature down to 10 K at different excitation power. In this work we report the dependence of the ‘green band’ on the excitation power at various temperatures. 相似文献
15.
We report on density functional theory (DFT) calculations of the total and partial densities of states of rubidium dilead pentabromide, RbPb2Br5, employing the augmented plane wave+local orbitals (APW+lo) method as incorporated in the WIEN2k package. The calculations indicate that the Pb 6s and Br 4p states are the dominant contributors to the valence band: their main contributions are found to occur at the bottom and at the top of the band, respectively. Our calculations reveal that the bottom of the conduction band is formed predominantly from contributions of the unoccupied Pb 6p states. Data of total DOS derived in the present DFT calculations are found to be in agreement with the experimental X-ray photoelectron valence-band spectrum of this compound. The predominant contributions of the Br 4p states at the top of the valence band of rubidium dilead pentabromide are confirmed by comparison on a common energy scale of the X-ray emission band representing the energy distribution of the valence Br p states and the X-ray photoelectron valence-band spectrum of the RbPb2Br5 single crystal. Main optical characteristics of RbPb2Br5, such as dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity are explored for RbPb2Br5 by the DFT calculations. 相似文献
16.
Electrical and physical parameters, which influence the photoluminescence (PL) properties of spark-processed silicon (sp-Si), were systematically varied in order to obtain optimal PL emission. Among these parameters are the average spark current, the pulse width of the spark events, the frequency of the pulses, the processing time, the electrode diameter, the distance between the electrodes, the spark-processing environment, and the gas ambient pressure. It was found that for optimal PL emission the processing current needs to be between 20 and 40 mA, and the pulse frequency of the sparks between 10 and 15 kHz. Further, the N2/O2 ratio of the processing environment needs to be about 7:3 and the ambient gas pressure and the processing time as large as feasible. The conditions that are favorable for green PL are a small pulse width, a small counter electrode diameter, a small gap between electrodes, a relatively large nitrogen concentration in the processing chamber, and a comparatively large spark frequency. In the opposite cases, a UV/blue PL is predominantly observed. The results are discussed in terms of various thermal effects on the resulting molecules or defects, which are believed to be important for the PL emission. 相似文献
17.
K. Wojciechowski J. Tobola R. Zybala 《Journal of Physics and Chemistry of Solids》2008,69(11):2748-2755
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples. 相似文献
18.
N. Mandal F.C. Peiris O. Maksimov M.C. Tamargo 《Solid State Communications》2009,149(39-40):1698-1701
We have used spectroscopic ellipsometry to determine the complex dielectric function of a series of ternary BexZn1−xTe thin films grown by molecular beam epitaxy. The II–VI semiconductor alloys were grown on InP substrates that had an InGaAs buffer layer. After the growth, X-ray diffraction experiments were performed in order to determine the alloy concentration. A standard inversion technique was used to obtain the dielectric functions from the measured ellipsometric spectra, obtained between 2000 nm (5000 cm−1) and 40,000 nm (250 cm−1). By modelling the dielectric function as a collection of oscillators, representing longitudinal and transverse optical phonons of the BexZn1−xTe lattice, we were able to recover the phonon spectra for this alloy system. It is argued that the additional phonon modes that are obtained from ellipsometry are best understood from the recently-proposed percolation model. 相似文献
19.
Y. C. Lee H. T. Shu J. L. Shen K. F. Liao W. Y. Uen 《Solid State Communications》2001,120(12):501-504
Photoluminescence and photoconductivity measurements were used to study the influence of Ho doping on the optical properties of InGaAsP layers grown by liquid phase epitaxy (LPE). The full width at half maximum (FWHM) of the photoluminescence peak was found to decrease as the amount of Ho increases. When the amount of Ho is 0.11 wt%, the FWHM has a minimum value of 7.93 meV, about 46% lower than that of the undoped InGaAsP. The absorption tails observed in the photoconductivity were analyzed with the Urbach tail model and the Urbach energies were obtained from the fits. The Urbach energy decreases as the amount of Ho increases, indicating that Ho doping greatly reduces the amount of residual impurities in LPE-grown layers. 相似文献
20.
J. Warczewski J. Krok-Kowalski P. Gusin P. Zajdel 《Journal of Physics and Chemistry of Solids》2005,66(11):2044-2048
The relation of the magnetic coupling constants and the random distribution of dopants and defects under the percolation threshold is studied. The relation of the 2nd non-linear static magnetic susceptibility and the 2nd harmonic of the dynamic magnetic susceptibility is used for the interpretation of experimental data concerning the spin-glass state obtained as a result of different types of the competitions of the magnetic interactions. Statistical background of the electrical properties as a result of their correlation with the magnetic properties is discussed. 相似文献