首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Abstract— The recent results of stationary-state and time-resolved absorption, fluorescence and Raman spectroscopies of some typical carotenoids are summarized. Theoretical analyses of carotenoid singlet states and of carotenoid-to-bacteriochlorophyll singlet-energy transfer are also included. On the bases of the energies, the lifetimes and other properties of singlet excited states of the carotenoids in solution and bound to the light-harvesting complexes, the energetics and the dynamics of the light-harvesting function in purple photosynthetic bacteria are discussed with emphasis on the 2Ag and Bu+ states.  相似文献   

2.
We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.  相似文献   

3.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.  相似文献   

4.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet–triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.  相似文献   

5.
A key and long standing question regarding the function of photosynthetic systems concerns the advantages that delocalized electronic excitations and their coherent dynamics could offer to robust and efficient energy transfer within and between photosynthetic light-harvesting complexes. Here we discuss how the framework of entanglement can be used to characterize the strength and spatial distribution of electronic coherences in biomolecular aggregates, why this is interesting, and how one can go about investigating possible relations between non-vanishing electronic coherences and efficient excitation transfer from donors to acceptors. As an example we discuss how certain coherences may correlate to efficient energy transfer in the Fenna-Mathews-Olson complex. Perspectives about understanding advantages of coherence-assisted energy transfer are discussed.  相似文献   

6.
While the fascinating chemistry demonstrated by metalated N-heterocyclic carbene (NHC) complexes highlights the significance of metalated heterocyclic chemistry, the development of other metalated heterocycles is falling behind, presumably because of the sparseness of general synthetic methodologies. In this Concept article, the strategy to prepare metalated heterocyclic complexes by metal-induced cycloisomerization of heteroatom-functionalized alkynes is presented. The isolation of and calculations on novel ruthenium complexes bearing chromene, chromone, indole, indoline, indolizine, and indolizinone moieties prepared from reactions between alkynes and ruthenium complexes are discussed, with emphasis on the mechanistic insights into the ruthenium-induced alkyne transformations and applications in material design and drug discovery.  相似文献   

7.
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.  相似文献   

8.
Biliproteins     
Biliproteins, covalently bonded complexes of proteins and bile pigments, serve as light-harvesting pigments in photosynthesis and light-sensory pigments of photosynthetic organisms. Recent developments in the biochemistry and biophysics of these pigments are reviewed and an attempt is made to describe their functions of light-harvesting and of information transduction on a molecular level.  相似文献   

9.
Protein diffusion in and around the photosynthetic membrane must play a crucial role in photosynthetic functions including electron transport, regulation of light-harvesting, and biogenesis, turnover and repair of membrane components. Protein mobility is controlled by a complex web of specific interactions, plus the viscosity of the environment and the extent of macromolecular crowding. I discuss the techniques that can be used to measure protein mobility in photosynthetic membranes. I then summarize what we know about the constraints on protein mobility imposed by macromolecular aggregation and crowding in and around the thylakoid membranes of green plants and cyanobacteria, with particular reference to the fluidity of the thylakoid membrane and the aqueous phases on either side of the membrane (the stroma/cytoplasm and the thylakoid lumen). Current indications are that the stroma/cytoplasm is a relatively fluid environment, whereas protein mobility in the lumen may be extremely restricted. The thylakoid membrane itself has an intermediate fluidity: some protein complexes are virtually immobile, probably due to their incorporation into large, stable macromolecular aggregates. However, there is sufficient free space to allow the long-range diffusion of some complexes. Finally, I discuss some future directions for research in this area.  相似文献   

10.
Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.  相似文献   

11.
Abstract— Generation of the nonequilibrium distribution of excited vibrational modes stimulated by electronic energy relaxation in pigment-protein complexes of the light-harvesting antenna of some photosynthetic systems is discussed in this paper. It is shown that the simplest approach to this problem can be achieved by introducing a local temperature, which is a good parameter for describing the nonequilibrium distribution of the local vibrational modes of the pigment molecules and its nearest protein surroundings. Then the transient absorption kinetics is determined by the kinetics of the excitation relaxation as I well as the heating/cooling of the local vibrational modes. Experimentally, this process can be investigated in the i singlet-singlet annihilation conditions that create the i greatest amount of local heating. The systems under in-: vestigation are trimers of bacteriochlorophyll a contain- i ing pigment-protein complexes from the green sulfur i bacterium Chlorobium tepid urn (so-called FMO complexes) and aggregates of the light-harvesting complexes of photosystem II (LHC2) from higher plants containing chlorophyll alb. It was shown that at 77 K the heat redistribution kinetics in LHC2 is on the order of 3040 ps and in FMO it is approximately equal to 26 ps. The local heating effect at room temperature is less pronounced; however, by using longer pulses and at higher excitation energies (on the order of a magnitude higher), an additional kinetics of hundreds of ps, also related to the heating/cooling process, was observed.  相似文献   

12.
Abstract— Numerical simulations of the ultrafast exciton motion in photosynthetic antenna complexes are used to reproduce measured data of optical pump-probe experiments. Emphasis is put on a chlorophyll aL/chlorophyll b dimer of the light-harvesting complex of the photosystem II of higher plants (LHC-II). To account for intramolecular excited-state absorption the standard exciton theory is extended to the inclusion of a second higher excited singlet state per chlorophyll molecule. The density matrix theory is applied to describe the dissipative dynamics of excitons. Different mechanisms for energy relaxation and dephasing including pure dephasing processes are discussed. As a result, a further refinement of earlier calculations on the one-color pump-probe spectra at the LHC-II can be presented. In particular, the presence of non-Markovian effects with respect to the exciton-vibrational interaction in the LHC-II, discovered previously in the two-color pump-probe spectrum, is demonstrated here for the one-color pump-probe case.  相似文献   

13.
Long-lived electronic coherences in various photosynthetic complexes at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the molecular polarization. Quantum process tomography (QPT) is a technique whose goal is that of obtaining the time-evolution of all the density matrix elements based on a designed set of experiments with different preparation and measurements. The QPT procedure was conceived in the context of quantum information processing to characterize and understand general quantum evolution of controllable quantum systems, for example while carrying out quantum computational tasks. We introduce our QPT method for ultrafast experiments, and as an illustrative example, apply it to a simulation of a two-chromophore subsystem of the Fenna-Matthews-Olson photosynthetic complex, which was recently shown to have long-lived quantum coherences. Our Fenna-Matthews-Olson model is constructed using an atomistic approach to extract relevant parameters for the simulation of photosynthetic complexes that consists of a quantum mechanics/molecular mechanics approach combined with molecular dynamics and the use of state-of-the-art quantum master equations. We provide a set of methods that allow for quantifying the role of quantum coherence, dephasing, relaxation and other elementary processes in energy transfer efficiency in photosynthetic complexes, based on the information obtained from the atomistic simulations, or, using QPT, directly from the experiment. The ultimate goal of the combination of this diverse set of methodologies is to provide a reliable way of quantifying the role of long-lived quantum coherences and obtain atomistic insight of their causes.  相似文献   

14.
15.
Appropriate experimental platforms are required to clarify the structure–function relationships of membrane protein assemblies. In photosynthetic bacteria, light-harvesting complex 2 and light-harvesting/reaction center core complex play key roles in capturing and transferring light energy and facilitating subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly in the photosynthetic membrane. However, the mechanism through which this assembly influences the efficiency of energy conversion remains to be clarified. We review our recent studies that were conducted to evaluate the structure–function relationship of the supramolecular assembly of photosynthetic antenna complexes in various lipid bilayer systems, as well as the construction of novel systems of planar lipid membranes for use as experimental platforms.  相似文献   

16.
This tutorial review provides new insights into the binding interactions between anionic surfactant molecules and various macromolecules in solution. The systems are of inherent scientific interest because synergistic mixing between these two components leads to complexes commonly found in applications such as detergency, cosmetic products, rheology control, paint and pharmaceutical formulations. We describe how the basic foundations, which are prerequisite to characterize a given polymer/surfactant system are evaluated together with information on the binding mechanism and structure derived from several methodologies.  相似文献   

17.
18.
Recent progress in fundamental studies on multiporphyrin arrays has provided structural parameters for the molecular design of artificial light-harvesting antennae which mimic the wheel-like antenna complexes of photosynthetic purple bacteria. Covalent and noncovalent approaches have been employed for the construction of artificial light-harvesting multiporphyrin arrays. Such arrays are categorized into ring-shaped, windmill-shaped, star-shaped, and dendritic architectures. In particular, dendritic multiporphyrin arrays have been proven to be promising candidates for both providing a large absorption cross-section and enabling the vectorial transfer of energy over a long distance to a designated point. Such molecular and supramolecular systems are also expected to be potent components for molecular electronics and photonic devices.  相似文献   

19.
As a model of photosynthetic unit (PSU), self-assembled aggregates of pigment-protein complexes from photosynthetic bacteria were prepared in a lipid bilayer by reconstitution of the light-harvesting 2 (LH2) complex and light-harvesting 1-reaction center (LH1-RC) complex through detergent removal of their micelles in the presence of lipids. By performing polarization-controlled fluorescence and fluorescence-excitation spectroscopy on single aggregates at a temperature of 5 K, the composition of individual aggregates was determined and excitation energy transfer (EET) between constituent complexes was observed. LH2 and LH1-RC from a bacterium, Rhodobacter (Rb.) sphaeroides, were found to form a trimeric aggregate in which EET takes place from one LH2 to two LH1-RCs. In contrast, a heterodimer of LH2 and LH1-RC in which EET works was found to assemble from a combination of complexes of different bacterial species, that is, LH2 from Rb. sphaeroides and LH1-RC from Rhodopseudomonas (Rps.) palustris.  相似文献   

20.
Hierarchical organization of light-absorbing molecules is integral to natural light harvesting complexes and has been mimicked by elegant chemical systems. A challenge is to attain such spatial organization among nanoscale systems. Interactions between nanoscale systems, e.g., conjugated polymers, carbon nanotubes, quantum dots, and so on, are of interest for basic and applied reasons. However, typically the excited-state interactions and dynamics are examined in rather complex blends, such as cast films. A model system with complexity intermediate between a film and a supramolecular system would yield helpful insights into electronic energy and charge transfer. Here, we report a simple and versatile approach to achieving spatially defined organization of colloidal CdSe, CdSe/ZnS core/shell, or PbS nanocrystals (quantum dots) with poly(3-hexylthiophenes) (P3HTs) using micelles of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as the main structural motif. We compare the characteristics of this system to those of natural light-harvesting complexes. Bulk heterojunction films (and related systems) are characterized by electronic interactions, and therefore dynamics of charge and energy transfer, at interfaces rather than between specific donor-acceptor molecules. Owing to structural disorder, such systems are inherently complex. Therefore, we expect that the spatially defined organization of the active components in the present system provides new opportunities for studying the complicated photophysics intrinsic to blends of nanoscale systems, such as bulk heterojunctions by establishing simplified and better controlled interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号