首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu JW  Wang P  Chen L 《Inorganic chemistry》2011,50(12):5706-5713
Three semiconducting ternary sulfides have been synthesized from the mixture of elements with about 20% excess of sulfur (to establish oxidant rich conditions) by solid-state reactions at high temperature. Ba(12)In(4)S(19) ≡ (Ba(2+))(12)(In(3+))(4)(S(2-))(17)(S(2))(2-), 1, crystallizes in the trigonal space group R ?3 with a = 9.6182(5) ?, b = 9.6182(5) ?, c = 75.393(7) ?, and Z = 6, with a unique long period-stacking structure of a combination of monometallic InS(4) tetrahedra, linear dimeric In(2)S(7) tetrahedra, disulfide S(2)(2-) anions, and isolated sulfide S(2-) anions that is further enveloped by Ba(2+) cations. Ba(4)In(2)S(8) ≡ (Ba(2+))(4)(In(3+))(2)(S(2-))(6)(S(2))(2-), 2, crystallizes in the triclinic space group P ?1? with a = 6.236(2) ?, b = 10.014(4) ?, c = 13.033(5) ?, α = 104.236(6)°, β = 90.412(4)°, γ = 91.052(6)°, and Z = 2. Ba(4)Ga(2)S(8) ≡ (Ba(2+))(4)(Ga(3+))(2)(S(2-))(6)(S(2))(2-), 3, crystallizes in the monoclinic P2(1)/c with a = 12.739(5) ?, b = 6.201(2) ?, c = 19.830(8) ?, β = 104.254(6)° and Z = 4. Compounds 2 and 3 represent the first one-dimensional (1D) chain structure in ternary Ba/M/S (M = In, Ga) systems. The optical band gaps of 1 and 3 are measured to be around 2.55 eV, which agrees with their yellow color and the calculation results. The CASTEP calculations also reveal that the disulfide S(2)(2-) anions in 1-3 contribute mainly to the bottom of the conduction bands and the top of valence bands, and thus determine the band gaps.  相似文献   

2.
Kong F  Xu X  Mao JG 《Inorganic chemistry》2010,49(24):11573-11580
Systematic explorations of new compounds in the Li(I)-Ga(III)-Te(IV)-O system led to two new isomeric ternary gallium tellurites, namely, α-Ga(2)(TeO(3))(3) and β-Ga(2)(TeO(3))(3), and two new quaternary lithium gallium tellurites, namely, HLi(2)Ga(3)(TeO(3))(6)(H(2)O)(6) and Li(9)Ga(13)Te(21)O(66). α-Ga(2)(TeO(3))(3) is a noncentrosymmetric structure (I4?3d) and displays a moderately strong second-harmonic-generation response that is comparable with that of KDP (KH(2)PO(4)). Its structure features a condensed three-dimensional (3D) network alternatively connected by GaO(4) tetrahedra and TeO(3) trigonal pyramids via corner sharing. β-Ga(2)(TeO(3))(3) is centrosymmetric (P6(3)/m) and features a 3D open framework composed of Ga(2)O(9) dimers bridged by TeO(3) groups with one-dimensional (1D) 12-MR channels along the c axis. Although both HLi(2)Ga(3)(TeO(3))(6)(H(2)O)(6) and Li(9)Ga(13)Te(21)O(66) crystallized in the same space group R3?, they belong to different structure types. The structure of HLi(2)Ga(3)(TeO(3))(6)(H(2)O)(6) can be viewed as the 1D tunnels of the 3D gallium tellurite being occupied by Li(+) and H(+) ions whereas the structure of Li(9)Ga(13)Te(21)O(66) is a complicated 3D framework composed of alternating gallium tellurite layers and GaO(6) octahedral layers with Li(+) cations being located at the cavities of the structure. Optical diffuse-reflectance spectrum measurements indicate that all four compounds are insulators and transparent in the range of 300-2500 nm.  相似文献   

3.
Three different perovskite-related phases were isolated in the SrGa(1-x)Sc(x)O(2.5) system: Sr(2)GaScO(5), Sr(10)Ga(6)Sc(4)O(25), and SrGa(0.75)Sc(0.25)O(2.5). Sr(2)GaScO(5) (x = 0.5) crystallizes in a brownmillerite-type structure [space group (S.G.) Icmm, a = 5.91048(5) ?, b = 15.1594(1) ?, and c = 5.70926(4) ?] with complete ordering of Sc(3+) and Ga(3+) over octahedral and tetrahedral positions, respectively. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) (x = 0.4) was determined by the Monte Carlo method and refined using a combination of X-ray, neutron, and electron diffraction data [S.G. I4(1)/a, a = 17.517(1) ?, c = 32.830(3) ?]. It represents a novel type of ordering of the B cations and oxygen vacancies in perovskites. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) can be described as a stacking of eight perovskite layers along the c axis ...[-(Sc/Ga)O(1.6)-SrO(0.8)-(Sc/Ga)O(1.8)-SrO(0.8)-](2).... Similar to Sr(2)GaScO(5), this structure features a complete ordering of the Sc(3+) and Ga(3+) cations over octahedral and tetrahedral positions, respectively, within each layer. A specific feature of the crystal structure of Sr(10)Ga(6)Sc(4)O(25) is that one-third of the tetrahedra have one vertex not connected with other Sc/Ga cations. Further partial replacement of Sc(3+) by Ga(3+) leads to the formation of the cubic perovskite phase SrGa(0.75)Sc(0.25)O(2.5) (x = 0.25) with a = 3.9817(4) ?. This compound incorporates water molecules in the structure forming SrGa(0.75)Sc(0.25)O(2.5)·xH(2)O hydrate, which exhibits a proton conductivity of ~2.0 × 10(-6) S/cm at 673 K.  相似文献   

4.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

5.
DW Lee  DB Bak  SB Kim  J Kim  KM Ok 《Inorganic chemistry》2012,51(14):7844-7850
The solid-state syntheses, crystal structures, and characterization of two stoichiometrically similar quaternary mixed metal selenite and tellurite, In(2)Zn(SeO(3))(4) and Ga(2)Zn(TeO(3))(4), respectively, are reported. While In(2)Zn(SeO(3))(4) crystallizes in the centrosymmetric monoclinic space group P2(1)/n (No. 14) with a = 8.4331(7) ?, b = 4.7819(4) ?, c = 14.6583(13) ?, and β = 101.684(6)°, Ga(2)Zn(TeO(3))(4) crystallizes in the non-centrosymmetric space group I-43d (No. 220) with a = b = c = 10.5794(8) ?. In(2)Zn(SeO(3))(4) exhibits a two-dimensional crystal structure consisting of distorted InO(6) octahedra, ZnO(6) octahedra, and SeO(3) polyhedra. Ga(2)Zn(TeO(3))(4) shows a three-dimensional framework structure that is composed of GaO(4) or ZnO(4) and TeO(3) polyhedra. An effect of the framework flexibility on the space group centricity is discussed. The SHG (second harmonic generation) efficiency of noncentrosymmetric Ga(2)Zn(TeO(3))(4), using 1064 nm radiation, is similar to that of KH(2)PO(4) (KDP) and is not phase-matchable (Type 1). Complete characterizations including infrared spectroscopy and thermal analyses for the reported materials are also presented, as are dipole moment calculations.  相似文献   

6.
The (Na(1-x)Cu(x))(2)Ta(4)O(11) (0 ≤ x ≤ 0.78) solid-solution was synthesized within evacuated fused-silica vessels and characterized by powder X-ray diffraction techniques (space group: R3c (#167), Z = 6, a = 6.2061(2)-6.2131(2) ?, c = 36.712(1)-36.861(1) ?, for x = 0.37, 0.57, and 0.78). The structure consists of single layers of TaO(7) pentagonal bipyramids as well as layers of isolated TaO(6) octahedra surrounded by Na(+) and Cu(+) cations. Full-profile Rietveld refinements revealed a site-differentiated substitution of Na(+) cations located in the 12c (Wyckoff) crystallographic site for Cu(+) cations in the 18d crystallographic site. This site differentiation is driven by the linear coordination geometry afforded at the Cu(+) site compared to the distorted seven-coordinate geometry of the Na(+) site. Compositions more Cu-rich than x ~ 0.78, that is, closer to "Cu(2)Ta(4)O(11)", could not be synthesized owing to the destabilizing Na(+)/Cu(+) vacancies that increase with x up to the highest attainable value of ~26%. The UV-vis diffuse reflectance spectra show a significant red-shift of the bandgap size from ~4.0 eV to ~2.65 eV with increasing Cu(+) content across the series. Electronic structure calculations using the TB-LMTO-ASA approach show that the reduction in bandgap size arises from the introduction of Cu 3d(10) orbitals and the formation of a new higher-energy valence band. A direct bandgap transition emerges at k = Γ that is derived from the filled Cu 3d(10) and the empty Ta 5d(0) orbitals, including a small amount of mixing with the O 2p orbitals. The resulting conduction and valence band energies are determined to favorably bracket the redox potentials for water reduction and oxidation, meeting the thermodynamic requirement for photocatalytic water-splitting reactions.  相似文献   

7.
A new phase [PtIn6](GeO4)2O, a filled variant of [PtIn6](GaO4)2, and the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) were prepared and characterized. Single-crystal structure refinements show that [PtIn6](GeO4)2O is isotypic with the mineral, sulfohalite Na6FCl(SO4)2, and crystallizes in the space group Fmm (Z = 4) with a = 1006.0(1) pm. The building units of [PtIn6](GeO4)2O are isolated [PtIn6]10+ octahedra and (GeO4)4- tetrahedra, and the isolated O2- ions occupy the centers of the In6 octahedra made up of six adjacent PtIn6 octahedra. The lattice parameter of the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) varies gradually from a = 1001.3(1) pm at x = 0 to a = 1006.0(1) pm at x = 2, and the color of the solid solution changes gradually from black (x = 0) to red (x = 1) to yellow (x = 2). The cause for the gradual color change was examined by performing density functional theory electronic structure calculations for the end members [PtIn6](GaO4)2 and [PtIn6](GeO4)2O. Our analysis indicates that an oxygen atom at the center of a In6 octahedron cuts the In 5p/In 5p bonding interactions between adjacent [PtIn6]10+ octahedra thereby raising the bottom of the conduction bands, and the resulting quantum dot effect is responsible for the color change.  相似文献   

8.
Two new noncentrosymmetric (NCS) polar oxides, BaMgTe(2)O(7) and BaZnTe(2)O(7), have been synthesized and characterized, with their crystal structures determined by single crystal X-ray diffraction. The iso-structural materials exhibit structures consisting of layers of corner-shared MgO(5) or ZnO(5), Te(6+)O(6), and Te(4+)O(4) polyhedra that are separated by Ba(2+) cations. The Te(4+) cation is found in a highly asymmetric and polar coordination environment attributable to its stereoactive lone-pair. The alignment of the individual TeO(4) polar polyhedra results in macroscopic polarity for BaMgTe(2)O(7) and BaZnTe(2)O(7). Powder second-harmonic generation (SHG) measurements revealed a moderate SHG efficiency of approximately 5 × KDP (or 200 × α-SiO(2)) for both materials. Piezoelectric charge constants of 70 and 57 pm/V, and pyroelectric coefficients of -18 and -10 μC·m(-2)·K(-1) were obtained for BaMgTe(2)O(7) and BaZnTe(2)O(7), respectively. Although the materials are polar, frequency dependent polarization measurements indicated that the materials are not ferroelectric, that is, the observed macroscopic polarization cannot be reversed. Infrared, UV-vis diffuse spectroscopy, and thermal properties were also measured. Crystal data: BaMgTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.558(2) ?, b = 15.215(6) ?, c = 7.307(3) ?, V = 617.9(4) ?(3), and Z = 4; BaZnTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.5498(4) ?, b = 15.3161(11) ?, c = 7.3098(5) ?, V = 621.34(8) ?(3), and Z = 4.  相似文献   

9.
Mu-23, [(C(6)H(15)N(2))(C(6)H(16)N(2))Ga(5)F(6)(H(2)O)(2)(PO(4))(4)] x 4 H(2)O, the first layered fluorinated gallophosphate with a Ga/P molar ratio of 5:4, was obtained in the presence of fluoride ions with 1,4-dimethylpiperazine as an organic template. It crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a=8.735(11), b=8.864(5), c=12.636(10) A, alpha=98.36(5), beta=100.18(8), gamma=115.84(7) degrees. The layers consist of GaO(2)F(3)(H(2)O), GaO(4)F(2) octahedra, and GaO(4) and PO(4) tetrahedra; these moieties share their oxygen and some of their fluorine atoms. The connectivity scheme of these different polyhedra leads to the formation of eight-membered rings.  相似文献   

10.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

11.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

12.
Cong R  Sun J  Yang T  Li M  Liao F  Wang Y  Lin J 《Inorganic chemistry》2011,50(11):5098-5104
Two new bismuth hydroxyl borates, Bi(2)O(2)[B(3)O(5)(OH)] (I) and Bi(2)O(2)[BO(2)(OH)] (II), have been synthesized under hydrothermal conditions. Their structures were determined by single-crystal and powder X-ray diffraction data, respectively. Compound I crystallizes in the orthorhombic space group Pbca with the lattice constants of a = 6.0268(3) ?, b = 11.3635(6) ?, and c = 19.348(1) ?. Compound II crystallizes in the monoclinic space group Cm with the lattice constants of a = 5.4676(6) ?, b = 14.6643(5) ?, c = 3.9058(1) ?, and β = 135.587(6)°. The borate fundamental building block (FBB) in I is a three-ring unit [B(3)O(6)(OH)](4-), which connects one by one via sharing corners, forming an infinite zigzag chain along the a direction. The borate chains are further linked by hydrogen bonds, showing as a borate layer within the ab plane. The FBB in II is an isolated [BO(2)(OH)](2-) triangle, which links to two neighboring FBBs by strong hydrogen bonds, resulting in a borate chain along the a direction. Both compounds contain [Bi(2)O(2)](2+) layers, and the [Bi(2)O(2)](2+) layers combine with the corresponding borate layers alternatively, forming the whole structures. These two new bismuth borates are the first ones containing [Bi(2)O(2)](2+) layers in borates. The appearance of Bi(2)O(2)[BO(2)(OH)] (II) completes the series of compounds Bi(2)O(2)[BO(2)(OH)], Bi(2)O(2)CO(3), and Bi(2)O(2)[NO(3)(OH)] and the formation of Bi(2)O(2)[B(3)O(5)(OH)] provides another example in demonstrating the polymerization tendency of borate groups.  相似文献   

13.
Two novel, noncentrosymmetric borate fluorides, Sr(3)B(6)O(11)F(2) and Ba(3)B(6)O(11)F(2), have been synthesized hydrothermally and their structures determined. The compounds are isostructural, crystallizing in space group P2(1), having lattice parameters of a = 6.4093 (13) ?, b = 8.2898 (17) ?, c = 9.3656 (19) ?, and β = 101.51 (3)° for Sr(3)B(6)O(11)F(2) and a = 6.5572 (13) ?, b = 8.5107 (17) ?, c = 9.6726 (19) ?, and β = 101.21 (3)° for Ba(3)B(6)O(11)F(2). The structure consists of a complex triple-ring borate framework having aligned triangular [BO(3)] groups that impart polarity. Fluorine atoms are bound only to the alkaline-earth metals and are not part of the borate framework, resulting in a vastly different structure from those of the hydrated borates Sr(3)B(6)O(11)(OH)(2) and Ba(3)B(6)O(11)(OH)(2) with similar formulas. The title compounds are transparent to nearly 200 nm, making them potentially useful for deep-ultraviolet nonlinear-optical applications.  相似文献   

14.
The photocatalytic activities of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) strongly depended on the crystal structure. Overall, photocatalytic water splitting into H2 and O2 proceeded over La3TaO7 and La3NbO7, which have an orthorhombic weberite structure, Y2Ti2O7 and Gd2Ti2O7, which have a cubic pyrochlore structure, and La2Ti2O7, which has a monoclinic perovskite structure. All of these materials are composed of a network of corner-shared octahedral units of metal cations (TaO6, NbO6, or TiO6); materials without such a network were inactive. The octahedral network certainly increased the mobility of electrons and holes, thereby enhancing photocatalytic activity.  相似文献   

15.
新钽酸盐Ba2LnTi2Ta3O15(Ln=Y、La)的结构与介电性能   总被引:3,自引:0,他引:3  
通过固相反应法合成了四方钨青铜结构新钽酸盐Ba2LaTi2Ta3O15与Ba2YTi2Ta3O15,分别进行了X射线衍射分析与介电性能测试.结果表明, Ba2LaTi2Ta3O15室温时晶胞参数为a=1.242 64(5) nm, c=0.391 57(2) nm,为四方钨青铜结构顺电相;Ba2YTi2Ta3O15室温时晶胞参数为a=1.236 46(4) nm, c=0.388 60(2) nm,为四方钨青铜结构铁电相,铁电相与顺电相转变温度为180 ℃.频率为1 MHz时, Ba2LaTi2Ta3O15陶瓷的室温相对介电常数为194,介电损耗也降低至8×10-4. Ba2YTi2Ta3O15陶瓷的室温相对介电常数为107.  相似文献   

16.
Lii KH  Chen CY 《Inorganic chemistry》2000,39(15):3374-3378
The first metal phosphatooxalate containing a chiral amine, (R-C5H14N2)2[Ga4(C2O4)(H2PO4)2(PO4)4].2H2O, has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction and 31P MAS NMR spectroscopy. It crystallizes in the monoclinic space group P2(1) (No. 4) with a = 8.0248(4) A, b = 25.955(1) A, c = 9.0127(5) A, beta = 100.151(1) degrees, and Z = 2. The structure consists of GaO6 octahedra and GaO4 tetrahedra connected by coordinating C2O4(2-) and phosphate anions to form anionic sheets in the ac plane with charge-compensating diprotonated R-2-methylpiperazinium cations and water molecules between the layers. There is a good correlation between the NMR spectrum and the structure.  相似文献   

17.
Li RK  Yu Y 《Inorganic chemistry》2006,45(17):6840-6843
The title compound, Ba4Ga2B8O18Cl2.NaCl, is found to crystallize in a polar space group P4(2)nm with cell dimensions of a = 12.1134(2) A and c = 6.8456(1) A. The basic building blocks of the structure are the B4O9 groups, which are interconnected by the GaO4 tetrahedron to form a three-dimensional net with Ba2+ ion-, Cl- ion-, and NaCl molecule-filled tunnels. This net structure is closely related to that of mineral hilgardite, with which many variant compounds have been found. Both a powder second-harmonic-generation test and calculations suggest that it possesses an optical nonlinearity comparable to that of potassium dihydrogen phosphate.  相似文献   

18.
The results of density functional theory based calculations on Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 clusters are reported here. A preference for planar arrangement of the constituent atoms maximizing the ionic interactions is found in the ground state of the clusters considered. The sequential oxidation of the metal-excess clusters increases the binding energy, but the sequential removal of a metal atom from the oxygen-excess clusters decreases the binding energy. The increase in the oxygen to metal ratio in these clusters is accompanied by increase in both electron affinity and ionization potential. The ionization induced structural distortions in the neutral clusters are relatively small, except those for Ga3O2. In anionic (cationic) clusters, the added (ionized) electron is shared by the Ga atoms, except in the case of GaO3. The vibrational frequencies and charge density analysis reveal the importance of the ionic Ga-O bond in stabilizing the gallium oxide clusters considered in this study.  相似文献   

19.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

20.
Two new quaternary mixed metal oxide materials--InVTe(2)O(8) and InVSe(2)O(8)--have been synthesized, as crystals and pure bulk powders by standard solid-state reactions using In(2)O(3), V(2)O(5), and TeO(2) (or SeO(2)) as reagents. The crystal structures of the reported materials were determined using single-crystal X-ray diffraction. InVTe(2)O(8) crystallizes in the monoclinic centrosymmetric space group P2(1)/n (No. 14), with unit-cell parameters of a = 7.8967(16) ?, b = 5.1388(10) ?, c = 16.711(3) ?, β = 94.22(3)°, and Z = 4, and InVSe(2)O(8) crystallizes in the noncentrosymmetric space group Pm (No. 6) with unit-cell parameters of a = 4.6348(9) ?, b = 6.9111(14) ?, c = 10.507(2) ?, β = 97.77(3)°, and Z = 2. While the centrosymmetric InVTe(2)O(8) shows a two-dimensional (2D) layered structure composed of InO(6) octahedra, VO(4) tetrahedra, and TeO(4) polyhedra, the noncentrosymmetric InVSe(2)O(8) exhibits a three-dimensional (3D) framework structure with distorted InO(6) octahedra, VO(5) square pyramids, and SeO(3) polyhedra. Powder second-harmonic generation (SHG) measurements on InVSe(2)O(8), using 1064-nm radiation, indicate that the material has a SHG efficiency ~30 times that of α-SiO(2). Additional SHG measurements reveal that the material is not phase-matchable (Type 1). Infrared, ultraviolet-visible light (UV-vis) diffuse reflectance, and thermogravimetric analyses for the two compounds are also presented, as are dipole moment calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号