首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Monoamine oxidases have two functionally distinct but structurally similar isoforms (MAO-A and MAO-B). The ability to differentiate them by using fluorescence detection/imaging technology is of significant biological relevance, but highly challenging with available chemical tools. Herein, we report the first MAO-A-specific two-photon fluorogenic probe ( F1 ), capable of selective imaging of endogenous MAO-A enzymatic activities from a variety of biological samples, including MAO-A-expressing neuronal SY-SY5Y cells, the brain of tumor-bearing mice and human Glioma tissues by using two-photon fluorescence microscopy (TPFM) with minimal cytotoxicity.  相似文献   

2.
Fluorescence imaging provides an indispensable way to locate and monitor biological targets within complex and dynamic intracellular environments. Of the various imaging agents currently available, small molecule-based probes provide a powerful tool for live cell imaging, primarily due to their desirable properties, including cell permeability (as a result of their smaller sizes), chemical tractability (e.g., different molecular structures/designs can be installed), and amenability to imaging a wide variety of biological events. With a few exceptions, most existing small molecule probes are however not suitable for in vivo bioimaging experiments in which high-resolution studies of enzyme activity and localization are necessary. In this article, we reported a new class of fluorescently Quenched Activity-Based Probes (qABPs) which are highly modular, and can sensitively image (through multiple enzyme turnovers leading to fluorescence signal amplification) different types of enzyme activities in live mammalian cells with good spatial and temporal resolution. We have also incorporated two-photon dyes into our modular probe design, enabling for the first time activity-based, fluorogenic two-photon imaging of enzyme activities. This, hence, expands the repertoire of 'smart', responsive probes currently available for live cell bioimaging experiments.  相似文献   

3.
Two novel organic compounds, TPIM1 and TPIM2, with hydroxyl terminal hydrophilicity groups, have been designed and synthesized. Their one- and two-photon photophysical properties have been experimentally investigated, and emission wavelengths are 591 and 595 nm in phosphate buffered saline (PBS), respectively. The two-photon action cross-sections of two compounds were estimated by two-photon excited fluorescence technique using 200 fs, 76 MHz, Ti-sapphire laser, which are 95 and 70 GM for TPIM1 and TPIM2 in PBS, respectively. The photostability and cytotoxicity were evaluated to demonstrate the potential utility of TPIM1 as a suitable standalone fluorophore for live cells two-photon fluorescence biological imaging. TPFM imaging results demonstrate that HepG2 treated with 10 μM TPIM1 provides bright images with negligible toxicity.  相似文献   

4.
Light-up bioorthogonal probes have attracted increasing attention recently due to their capability to directly image diverse biomolecules in living cells without washing steps. The development of bioorthogonal probes with excellent fluorescent properties suitable for in vivo imaging, such as long excitation/emission wavelength, high fluorescence turn-on ratio, and deep penetration, has been rarely reported. Herein, a series of azide-based light-up bioorthogonal probes with tunable colors based on a weak fluorescent 8-aminoquinoline ( AQ ) scaffold were designed and synthesized. The azido quinoline derivatives are able to induce large fluorescence enhancement (up to 1352-fold) after click reaction with alkynes. In addition, the probes could be engineered to exhibit excellent two-photon properties (δ=542 GM at 780 nm) after further introducing different styryl groups into the AQ scaffold. Subsequent detailed bioimaging experiments demonstrated that these versatile probes can be successfully used for live cell/zebrafish imaging without washing steps. Further in vivo two-photon imaging experiments demonstrated that these light-up biorthogonal probe outperformed conventional fluorophores, for example, high signal-to-noise ratio and deep tissue penetration. The design strategy reported in this study is a useful approach to realize diverse high-performance biorthogonal light-up probes for in vivo studying.  相似文献   

5.
生理条件下光学性质稳定的双光子荧光染料在生物成像领域具有广阔的应用前景。我们使用2,4-二甲基-6-羟基嘧啶与4-(N,N-二甲氨基)苯甲醛进行缩合反应,设计合成了具有双光子荧光性质的化合物2-[(1E)-2-[4-(二甲氨基)苯基]乙烯基]-6-甲基-4(3H)-嘧啶(NHP)。通过质谱(MS)、核磁共振波谱(NMR)、紫外可见吸收光谱和荧光发射光谱等技术手段表征了其结构,研究了其光物理性质,以及外部环境改变对其发射光谱的影响。结果表明,化合物NHP的最佳吸收峰位于400 nm,最佳发射峰位于540 nm左右,且荧光发射不受金属离子、氨基酸和pH等环境因素的影响。生物实验结果表明,化合物NHP细胞毒性较小,且具有很好的活细胞和果蝇脑组织成像效果,是一种较为理想的双光子荧光生物成像染料。  相似文献   

6.
A microarray immobilized with 105 aldehyde-containing small molecules was screened against mammalian cell lysates over-expressing cathepsin L to identify two potent inhibitors, which were subsequently converted into cell-permeable probes capable of live-cell imaging of endogenous cysteinyl cathepsin activities by two-photon fluorescence microscopy.  相似文献   

7.
Phosphorescent heavy-metal complexes for bioimaging   总被引:1,自引:0,他引:1  
The application of phosphorescent heavy-metal complexes with d(6), d(8) and d(10) electron configurations for bioimaging is a new and promising research field and has been attracting increasing interest. In this critical review, we systematically evaluate the advantages of phosphorescent heavy-metal complexes as bioimaging probes, including their photophysical properties, cytotoxicity and cellular uptake mechanisms. The progress of research into the use of phosphorescent heavy-metal complexes for staining different compartments of cells, monitoring intracellular functional species, providing targeted bioimaging, two-photon bioimaging, small-animal bioimaging, multimodal bioimaging and time-resolved bioimaging is summarized. In addition, several possible future directions in this field are also discussed (133 references).  相似文献   

8.
The linear photophysical, excited state absorption (ESA), superfluorescence, and two-photon absorption (2PA) properties of 4,4'-(1E,1'E)-2,2'-(7,7'(1E,1'E)2,2'(4,4'-sulfonylbis(4,1-phenylene))bis(ethane-2,1-diyl)bis(9,9-didecy-9H-fluorene7,2-diyl))bis(ethane-2,1-diyl)bis(N,N-diphenylaniline) (1) were investigated in organic and aqueous media with respect to its potential application in biological imaging. The analysis of linear photophysical properties revealed a rather complex nature of the main one-photon absorption band, strong solvatochromic effects in the steady-state fluorescence spectra, single-exponential fluorescence decay, and high fluorescence quantum yields in organic solvents (≈1.0). The ESA spectra of 1 suggested potential for light amplification in nonpolar media while efficient superfluorescence in cyclohexane was demonstrated. The degenerate 2PA spectra of 1 were obtained over a broad spectral range (640-900 nm), using a standard two-photon induced fluorescence method under 1 kHz femtosecond excitation. Two well defined 2PA bands with maximum 2PA cross sections up to 1700 GM in the higher energy, short wavelength band and ≈1200 GM in the lower energy, long wavelength band of 1 were shown. The potential use of 1 in bioimaging was demonstrated via one- and two-photon in vitro fluorescence imaging of HCT 116 cells.  相似文献   

9.
Monoamine oxidases have two functionally distinct but structurally similar isoforms (MAO‐A and MAO‐B). The ability to differentiate them by using fluorescence detection/imaging technology is of significant biological relevance, but highly challenging with available chemical tools. Herein, we report the first MAO‐A‐specific two‐photon fluorogenic probe ( F1 ), capable of selective imaging of endogenous MAO‐A enzymatic activities from a variety of biological samples, including MAO‐A‐expressing neuronal SY‐SY5Y cells, the brain of tumor‐bearing mice and human Glioma tissues by using two‐photon fluorescence microscopy (TPFM) with minimal cytotoxicity.  相似文献   

10.
This review aims to provide a summary of the progress in TP small molecule fluorescent probes for enzymes in recent years and displays the main fluorescent mechanisms that have been applied to design probes.  相似文献   

11.
本文采用具有较大双光子吸收截面的有机分子2,5,2′,5′-(4′-N,N-二苯胺苯乙烯基)联苯(DPA-TSB)(双光子吸收截面δ: 3288 GM, 1 GM=1×10-50 cm4·s·photon-1·molecule-1), 通过再沉淀法制备水相分散的纳米粒子. 研究表明, 这种有机双光子纳米粒子可以有效地富集在细胞质中, 对细胞染色显示出良好的荧光成像能力.  相似文献   

12.
Jie Xu  Li Shang 《中国化学快报》2018,29(10):1436-1444
Recent advances in the development of near-infrared fluorescent metal nanoclusters for bioimaging applications have been thoroughly overviewed.  相似文献   

13.
Two-photon fluorescence microscopy (2PFM) emerged as a powerful alternative to conventional one-photon microscopy. 2PFM typically uses two near-infrared (NIR) photons to excite fluorescent dyes, which minimizes light scattering in biological samples. Multiphoton absorption also suppresses background signal and autofluorescence from tissues and allows to achieve higher 3D resolution images with low photodamage and photobleaching. Fluorene dyes possess distinct properties that meet the strict criteria of probes used for 2PFM such as enhanced solubility, photostability, and two-photon absorption cross-section. The fluorene molecule also includes many active positions that allow versatile synthesis, selective functionalization, bioconjugation, and tuning solubility. These properties have led to reporting several fluorene probes including monomers, polymers, and dendrimers with important uses in understanding molecular dynamics and bioimaging. The current review presents a compact summary of fluorene-based fluorophores for 2PFM bioimaging applications, shedding light on structure-photophysical property relationships in fluorenes and polyaromatic probe designs.  相似文献   

14.
The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4'-(4,4' (1E,1'E)-2,2'-(9,9-bis(2- (2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipiperazine-1-carboxylate (1) are reported. The steady-state linear absorption and fluorescence spectra, along with excitation anisotropy, fluorescence lifetimes, and photochemical stability of 1 were investigated in a number of organic solvents at room temperature. The 2PA spectra of 1 with a maximum cross-section of ~ 300 GM were obtained with a 1 kHz femtosecond laser system using open-aperture Z-scan and two-photon-induced fluorescence methods. The transient excited-state absorption (ESA) and gain kinetics of 1 were investigated by a femtosecond pump-probe methodology. Fast relaxation processes (~1-2 ps) in the gain and ESA spectra of 1 were revealed in ACN solution, attributable to symmetry-breaking effects in the first excited state. Efficient superfluorescence properties of 1 were observed in a nonpolar solvent under femtosecond excitation. One- and two-photon fluorescence microscopy imaging of HCT 116 cells incubated with probe 1 was accomplished, suggesting the potential of this new probe in two-photon fluorescence microscopy bioimaging.  相似文献   

15.
Two-photon (TP) imaging with a donor-acceptor (D?A) type fluorophore is an emerging tool for bioimaging and sensing. However, current TP probes suffer from serious solvatochromic quenching in aqueous solution due to their strong intramolecular charge transfer (ICT) in excited states. In this work, based on solvatochromism reversal, we report a novel strategy to develop TP probes for bioimaging. Specifically, compared with the normal two-photon probes that showed a fluorescence off with ICT suppressed, the novel probes exhibited strong fluorescence in the aqueous solution when their ICT was inhibited. This strategy not only provides a new way for the design of high-performance TP probes, but also expands the biological analysis toolbox for use in living systems.  相似文献   

16.
Red-to-NIR absorption and emission wavelengths are key requirements for intravital bioimaging. One of the way to reach such excitation wavelengths is to use two-photon excitation. Unfortunately, there is still a lack of two-photon excitable fluorophores that are both efficient and biocompatible. Thus, we design a series of biocompatible quadrupolar dyes in order to study their ability to be used for live-cell imaging, and in particular for two-photon microscopy. Hence, we report the synthesis of 5 probes based on different donor cores (phenoxazine, acridane, phenazasiline and phenothiazine) and the study of their linear and non-linear photophysical properties. TD-DFT calculations were performed and were able to highlight the structure-property relationship of this series. All these studies highlight the great potential of three of these biocompatible dyes for two-photon microscopy, as they both exhibit high two-photon cross-sections (up to 3650 GM) and emit orange to red light. This potential was confirmed through live-cell two-photon microscopy experiments, leading to images with very high brightness and contrast.  相似文献   

17.
Enzymes are macromolecular biological catalysts which can accelerate chemical reactions in living organisms. Almost all the physiological metabolism activities in the cell need enzymes to sustain life via rapid catalysis. Currently, medical research has proved that abnormal enzyme activity is associated with numerous diseases, such as Parkinson’s disease (PD), Alzheimer's disease (AD) and cancers. On the other hand, early diagnosis of those diseases is of great significance to improve the survival rate and cure rate. In the current diagnostic tools, two-photon fluorescent probes (TPFPs) are developing rapidly due to their unique advantages, such as higher spatial resolution, deeper imaging depth, and lower biotoxicity. Therefore, the design and synthesis of two-photon (TP) small molecule enzymatic probes have broad prospects for early diagnosis and treatment of diseases. As of now, scientists have developed many TP small molecule enzymatic probes. This review aims to summarize the TP small molecule enzymatic probes and expound the reaction mechanism.  相似文献   

18.
黄池宝  樊江莉  彭孝军  孙世国 《化学进展》2007,19(11):1806-1812
双光子荧光显微成像兼具诸如近红外激发、暗场成像、避免荧光漂白和光致毒、定靶激发、高横向分辨率与纵向分辨率、降低生物组织吸光系数及降低组织自发荧光干扰等特点而显著地优于单光子荧光显微成像,为生命科学研究提供了更为锐利的工具。而用于像离子的含量及其对生理的影响、离子参与的生理活动机制、离子与分子的作用、特定分子的分布及其相互作用等方面研究的双光子荧光探针,是实现成像的关键。双光子荧光探针的研究旨在促进双光子荧光显微镜应用的发展,促进生命科学、医学科学的快速发展,同时也带动双光子荧光探针所隶属的化学这一学科的发展。因此对双光子荧光探针的研究具有重要的理论和实践意义。该文综述了双光子荧光显微成像的优点、双光子荧光探针设计的原理及双光子荧光探针在离子分析方面的应用,并展望了这类荧光探针的发展趋势与应用前景。  相似文献   

19.
Bioimaging is increasingly becoming an indispensable tool in disease diagnosis, clinical trials and medical practice. Fluorescence bioimaging is minimally invasive, affordable and portable, with the potential to become a widespread medical imaging technique. Currently, a serious challenge obstructing the large-scale clinical applications of fluorescence technique is the shallow penetration depth. Three-photon fluorescence offers several advantages over near-infrared and two-photon fluorescence, such as deeper penetration, more confined excitation areas and higher resolution. On the other hand, fluorophores displaying solid-state fluorescence are intriguing because they can emit bright fluorescence in the condensed phase, which is beneficial to imaging applications demanding intense emission signals. This review highlights the recent advances in small organic AIEgens for three-photon fluorescence bioimaging in vivo. The progress suggests that three-photon fluorescence imaging offers deep penetration, good photostablity and high signal-to-background contrast, which is valuable in fluorescence imaging in vivo.  相似文献   

20.
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号