首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alignment control of liquid crystals on surface relief gratings   总被引:1,自引:0,他引:1  
《Liquid crystals》2000,27(12):1633-1640
Liquid crystal alignment layers of a high Tg polymer containing an azobenzene moiety are prepared by photofabrication of a surface relief grating (SRG). The interference pattern of a circular and linearly polarized Ar+ laser beam generated the surface relief grating and the morphology was detected by atomic force microscope. The optical anisotropy of the films was investigated by polarizing optical microscopy. The orientation of the optical axis of the film mainly depends on the direction of the initial polarization plane. Nematic liquid crystals were aligned parallel to the direction of the grating, but the pretilt angles of the liquid crystals were nearly zero. Irradiation with homogeneous linearly polarized light could also align liquid crystals, but this alignment capability was weaker than that of the SRG film.  相似文献   

2.
Liquid crystal alignment layers of a high T g polymer containing an azobenzene moiety are prepared by photofabrication of a surface relief grating (SRG). The interference pattern of a circular and linearly polarized Ar+ laser beam generated the surface relief grating and the morphology was detected by atomic force microscope. The optical anisotropy of the films was investigated by polarizing optical microscopy. The orientation of the optical axis of the film mainly depends on the direction of the initial polarization plane. Nematic liquid crystals were aligned parallel to the direction of the grating, but the pretilt angles of the liquid crystals were nearly zero. Irradiation with homogeneous linearly polarized light could also align liquid crystals, but this alignment capability was weaker than that of the SRG film.  相似文献   

3.
A number of the novel photochromic polyethylene (PE)‐based liquid crystal composites were prepared and studied. The oriented stretched porous polyethylene films were used as the polymer matrices. Commercial liquid crystals doped with new photochromic compounds were introduced into PE films and photo‐optical properties of the obtained composites were investigated. It was shown that a director of nematic liquid crystals is highly oriented along the stretching axis of PE films resulting in noticeable linear dichroism of the PE composite films. New approaches for reversible or irreversible image recording on PE LC composites by UV irradiation were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Novel composite films of chain-oriented DNA, which contain the DNA-binding dyes aligned in specific orientation, were successfully prepared by drying the solution under a horizontal magnetic field. Most of the dye-DNA composite films showed linear dichroism, as revealed by polarized ultraviolet-visible (UV-vis) spectroscopy. The intercalators, ethidium bromide and acridine orange, were fixed in chain-oriented DNA films in a similar binding manner as in solutions. Also, Hoechst 33258 and 4',6-diamidino-2-phenylindole were found to be aligned along the minor groove, even in the solid films. Thus, our new method of preparing dye-DNA composite films with chain orientation is useful for aligning small molecules, and it will provide views of the novel anisotropic materials expected in various application fields. We used this method to prepare composite DNA films with newly designed original compounds. Seven of nine dyes were judged to bind obviously to DNA as intercalators by polarized UV-vis spectroscopy. The DNA-binding manners were further analyzed by fluorescence anisotropy measurements. On the basis of the curves for the rotational angle dependence of the anisotropy, we were able to estimate the angles between the transition-dipole moments of dyes and the aligned chain axis of DNA. Interestingly, two original compounds were found to be in the tilted forms with regard to the plane of base pairs. We emphasize here that the method using aligned dye-DNA films is very convenient for identifying the binding modes of the compounds for double-stranded DNA.  相似文献   

5.
The alignment and optical properties of ferroelectric liquid crystal cells, having alignment films of a chalcone-based side chain polymer treated by linearly polarized UV irradiation were investigated. The long absorption band of the UV/Vis spectra gradually decreased and the FTIR spectra shifted as the irradiation times increased, indicating that cyclo-addition and isomerization reactions of the chalcone-based side chains occurred. UV dichroism demonstrated anisotropic changes in the alignment films, with a maximum at low exposure energy (0.5 J cm-2). Liquid crystal molecules were aligned perpendicular to the polarization direction of the linearly polarized UV radiation. The azimuthal anchoring energy of liquid crystal E7 on a chalcone-based side chain polymer surface increased with exposure energy. Well aligned defect-free cells and high contrast ratio were achieved with irradiation of longer than 5 min; the geometric conditions for a stable C2 structure may be satisfied at low temperature with slowly cooling.  相似文献   

6.
The polymer surface relaxation in thin films has been a long debating issue.We report a new method on studying surface relaxation behaviors of polymer thin films on a solid substrate.This method involved utilizing a rubbed polyimide surface with a pretilting angle in a liquid crystalline cell.Due to the surface alignment,the liquid crystals were aligned along the rubbing direction.During heating the liquid crystalline cell,we continuously monitored the change of orientation of the liquid crystals.It is u...  相似文献   

7.
《Liquid crystals》2000,27(3):341-348
Isotropic thin films of three original phenyl substituted cinnamate-based polymers, here-after referred to as 'Para', 'Meta' and 'Metamet' have been exposed to linearly polarized UV light and their photoinduced molecular orientations have been studied. The resulting photocrosslinked anisotropic polymer films were characterized using UV, conventional and polarization modulation (PM) FTIR spectroscopies. From UV and PM-IR linear dichroism measurements, at least two simultaneous orientation processes appear to play a key role in these phenyl substituted cinnamate-based systems. On the one hand, isomerization reactions deplete chromophores along the polarization direction (P) of the UV light and induce a preferential orientation of remaining 'trans'-isomers perpendicular to P; on the other hand, cycloaddition reactions lead to the formation of either head to head or head to tail photodimers aligned preferentially along P in the 'Para' and to a lesser extent in the 'Meta' and 'Metamet' systems. These last results are related to the different liquid crystal alignment properties of the films, and the influences of the chemical structure of the chromophores are discussed.  相似文献   

8.
We have achieved a growth of highly oriented crystalline pentacene thin films, with preferred a-b in-plane orientation with respect to the rubbing direction of a rubbed polymethylene surface. The polymethylene thin film, generated on a gold surface by gold-catalyzed decomposition of diazomethane, was annealed and gently rubbed in a fixed direction by a flannelette cloth to serve as an alignment layer during the deposition of pentacene molecules. Various surface analysis techniques, including reflection absorption IR spectroscopy (RAIRS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, grazing incidence X-ray diffraction (GIXD), and atomic force microscopy were used to elucidate the structural details of the polymethylene and the pentacene thin films deposited on it. Two crystalline morphologies of pentacene thin film were observed: the minor one of rod-like molecular crystals having their long axes of the crystals perpendicular to the rubbing direction, and the dominant one of platelet-like and layered crystals having the molecular axes stand near vertical to the surface. Moreover, GIXD revealed that the rubbing on polymethylene indeed induced a preferential azimuthal alignment of pentacene crystallites. The deposition of pentacene at 25 degrees C led to a twin growth of crystallites with the [110] direction predominately aligned perpendicular to the rubbing direction. In contrast, the pentacene deposition at 50 degrees C produced twinned crystallites of lower twin angle and the [120] direction aligned parallel to the rubbing direction.  相似文献   

9.
<正> 辐射接枝是高聚物改性的重要方法,它特别适用于一般的化学方法难以实现改性的高聚物,如聚四氟乙烯(PTFE)利用辐射接枝改进粘附性取得较好的效益。 不久以前,Yamakowa等人曾对辐射接枝聚乙烯的结构作了讨论。本文用光学显微镜和X-射线等方法对PTFE辐射接枝苯乙烯(St)-丙烯酸(AA)接枝共聚物的超分子  相似文献   

10.
The elastic theory of nemtatic liquid crystals is used to determine whether it gives support for recent experimental observations of a novel periodic phase occurring in homeotropically aligned films when an electric field is applied in the plane of the film. The director remains in the plane defined by the film normal and the field, and the wavevector of the periodicity is parallel to the field. It is found that the theory is consistent with experiment.  相似文献   

11.
Electrowetting is one approach to reducing the interfacial tension between a solid and a liquid. In this method, an electrical potential is applied across the solid/liquid interface which modifies the wetting properties of the liquid on the solid without changing the composition of the solid and liquid phases. Electrowetting of aligned carbon nanotube (CNT) films is investigated by the sessile drop method by dispensing deionized (DI) water or 0.03 M NaCl droplets (contacted by Au wire) onto aligned CNT films assembled on a copper substrate. The results demonstrate that electrowetting can greatly reduce the hydrophobicity of the aligned CNTs; the contact angle saturation for DI water and 0.03 M NaCl droplets occurs at 98 and 50 degrees , respectively. The combined effects of the geometrical roughness and the electrical potential on the contact angle are briefly discussed and modeled. Such a strategy may be invoked to controllably reduce the interfacial tension between carbon nanotubes (CNTs) and polymer precursors when infiltrating the monomers into the prealigned nanotube films.  相似文献   

12.
《Liquid crystals》2001,28(12):1799-1803
Using the glancing angle deposition (GLAD) technique, we have fabricated porous, chiral thin films with optically anisotropic helical microstructures that exhibit optical phenomena such as wavelength specific rotation of linearly polarized light. Initial research has shown that the porosity of the films allows for the addition of nematic liquid crystals (NLCs) to the films for promising applications in dynamically switchable devices, while simultaneously enhancing the optical properties of the film. This study describes the fundamental optical behaviour of LC-filled chiral thin films in relation to material, porosity, structure and thickness. It was found that for SiO2 films, the addition of NLCs increased the effective rotatory power by two-fold when compared with results from the film without added LCs. The rotatory power of Al2O3 and MgF2 films, while being similarly increased by the addition of LCs, exhibited a reversal in sign, or direction of rotation, for the visible wavelength spectrum investigated. The effects of film porosity and structure were studied by varying the angle of incidence from 83° to 86°; it was found that the greater porosity of the films deposited at larger angles allowed for more filling by the LCs and thus a larger increase in rotatory power. Finally, the addition of LCs was observed to shift the wavelength of peak rotation towards smaller values.  相似文献   

13.
A novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions. In the films, the PSPI polymer chains were found to undergo favorably unidirectional orientation via a specific orientation sequence of the polymer chain segments led by the directionally selective trans-cis photoisomerization of the stilbene chromophore units in the backbone induced by LPUVL exposure. Such unidirectionally oriented polymer chains of the films induce alignment of the LCs along the orientation direction of the polymer chains via favorable anisotropic molecular interactions between the oriented polymer chain segments and the LC molecules. In addition, the PSPI has an excellent film formation processibility; good quality PSPI thin films with a smooth surface are easily produced by simple spin-coating of the soluble poly(amic acid) precursor and subsequent thermal imidization process. In summary, this new PSPI is the promising LC alignment layer candidate with rubbing-free processing for the production of advanced LC display devices, including LC display televisions with large display areas.  相似文献   

14.
This review article provides an overview of the properties and methods for synthesis of BiSI and Bi13S18I2 semiconductor compounds in the form of thin films, powders and crystals, as well as their application in photovoltaic and photoelectrochemical devices. Over the past decade, the results of extensive and versatile research on the structure, properties, functionality and potential applications of bismuth-containing semiconductor materials have accumulated. Bismuth halides and chalcohalides are a developing class of materials that have a small band gap, high chemical stability, effective absorbing properties when absorbing light radiation, which causes the registration of high quantum efficiency values and the possibility of their use in photoelectrochemical processes and photovoltaic solid-state elements. This review presents the results of recent developments and basic approaches aimed at obtaining various multicomponent compounds based on bismuth and improving photoelectrochemical properties. Various structures which demonstrate the importance of thin films based on bismuth compounds are also described. The key problems related to the synthesis and development of these materials is presented. This review will provide a deeper understanding and determine the preferred direction for the synthesis of bismuth-containing thin films for energy and environmental applications.  相似文献   

15.
In this article, we describe the surface-assisted photoalignment of discotic liquid crystals (DLCs) on thin films of photo-cross-linkable polymers with cinnamoyl moieties as the side chains. Oblique irradiation of the polymer thin films with nonpolarized UV light at 313 nm brought about inclined orientation of the cinnamoyl residues as a result of their direction-selective photoisomerization and photodimerization. The DLC molecules on the photoirradiated polymer films were aligned in a tilted hybrid manner. This means that the DLC directors are continuously altered from the substrate to the DLC film surface so as to minimize the elastic free energy. Interestingly, we found that the tilted direction of aligned DLC molecules is clearly influenced by the chemical structures of the cinnamate-containing polymers. When a poly(vinyl cinnamate) thin film was obliquely exposed to nonpolarized UV light, the DLCs were inclined to the direction opposite to the UV light propagation. In a keen contrast, the thin film of poly(methacrylate)s tethering cinnamoyl groups, which was obliquely exposed to nonpolarized UV light in advance, provided the tilting DLC direction in parallel with the light propagation. The results were supported by tilted orientation of calamitic (rod-shaped) liquid crystal on the obliquely irradiated polymer films. Such photoalignment behavior of the DLCs can be rationalized by anchoring balance between intermolecular interaction of the DLC molecules with the photodimers of polymer films and those with the remaining E-isomers of cinnamoyl side chains at the film interface. The present technique of DLC photoalignment opens promising ways not only to understand anisotropic physical properties of DLCs, but also to design and fabricate novel nanodevices for photonics and electronics applications.  相似文献   

16.
The aligned films, the homogeneous film, the 90°‐twisted film and the 180°‐twisted film, have been prepared by immobilizing the polymerizable liquid crystals under the UV irradiation. The relation between the thermal conductivity and the aligned molecular direction of the films was investigated. It is indicated that the additional thermal transmission effect, which the increase of the thermal conductivity may be induced, would exist in the twisted films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1419–1425, 2006  相似文献   

17.
We measured the size changes of cross-linked polymer microspheres of narrow size distribution with different cross-linking densities by the in situ swelling method. The swelling behavior of these cross-linked polymer microspheres revealed that their maximal swelling degree linearly decreased as a function of the cross-linker content from 6.65 at 1.36 mol% to 2.43 at 3.25 mol%. By means of UV-vis spectra, we observed the spectral changes of the latex crystal films composed of these cross-linked polymer microspheres when we filled the interstices of the latex crystal films with different fluid media. Some succeeding peak shifts were observed, which may have resulted from the movement or the swelling of the polymer microspheres in the latex crystals.  相似文献   

18.
Photosensitive fluorinated polyesters (polymer-n) of varying molecular mass M n (number-average molecular mass) were synthesized. The thin films formed from polymer-n samples could induce liquid crystal (LC) alignment after irradiation by linearly polarized ultraviolet light. The LC alignment direction on the irradiated films was investigated in detail by linearly polarized infrared spectroscopy and polarizing optical microscopy. It was found that LC alignment behaviour changed with change in the molecular mass of polymer-n: irradiated films with lower or higher M n induced homeotropic or homogenous alignment, respectively. There was no clear morphological anisotropy in these aligned films, as observed by atomic force microscopy. The surface energies of the irradiated films were also measured using the indirect contact angle method, where both surface energy and its polar component increased with increasing M n. The variation in M n could be considered as a main reason for varying alignment behaviour.  相似文献   

19.
We have investigated the photoinduced optical properties of a new class of chiral methacrylic polymers characterised by the presence in the side chain of an optically active pyrrolidinyl ring linked to a trans-azoaromatic system. The homopolymers are enantiomerically pure and their strong optical activity indicates that the macromolecules assume, both in solution and in solid thin films, highly homogeneous conformations with a prevailing chirality. As expected, the studied polymers exhibit reversible linear dichroism and birefringence when irradiated with linearly polarised light. By irradiating with circularly polarised light, we have discovered that it is possible to photomodulate the chiroptical properties of the polymer films. After irradiation with L-polarised light, the CD spectra of the films show a net inversion of their relative sign. The effect is reversible and the original shape of the CD spectra can be restored by pumping with R-polarised radiation. This unexpected new phenomenon can be explained in terms of the ability of the L-polarised radiation to invert the prevailing helicity of the polymeric chains. The observed effect seems to open new possibilities for the use of azobenzene-containing materials as chiroptical switches.  相似文献   

20.
《Liquid crystals》2007,34(11):1233-1242
New thermotropic liquid crystalline monomer esters, containing fluorene in their mesogenic core with luminescent properties, were synthesized and characterized. The monomers studied exhibited a broad mesomorphic range and a nematic phase was identified by differential scanning calorimetry and polarized optical microscopy. Absorption and photoluminescence spectra studied in solution indicated that these compounds possess good optical stability. Linearly polarized light emission was observed in oriented thin films prepared by an in-situ photopolymerization technique. The preparation of oriented thin films shows a preferential emission direction necessary for application in linearly polarized blue light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号