首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of K(10)[alpha(2)-P(2)W(17)O(61)] or K(10)[alpha(1)-P(2)W(17)O(61)] or [Bu(4)N][OsCl(4)N] in a water/methanol mixture, and subsequent precipitation with (Bu(4)N)Br provided [alpha(2)-P(2)W(17)O(61){Os(VI)N}](7-) and [alpha(1)-P(2)W(17)O(61){Os(VI)N}](7-) Dawson structures as tetrabutylammonium salts. Reactions of [(Bu(4)N)(4)][alpha-H(3)PW(11)O(39)] with either [ReCl(3)(N(2)Ph(2))(PPh(3))(2)] or [Bu(4)N][ReCl(4)N] are alternatives to the synthesis of [(Bu(4)N)(4)][alpha-PW(11)O(39){Re(VI)N}]. (183)W and (15)N NMR, EPR, IR, and UV-visible spectroscopies and cyclic voltammetry have been used to characterize these compounds and the corresponding [(Bu(4)N)(4)][alpha-PW(11)O(39){Os(VI)N}] Keggin derivative.  相似文献   

2.
An H  Han Z  Xu T 《Inorganic chemistry》2010,49(24):11403-11414
A family of three-dimensional (3D) architectures based on lanthanide-substituted polyoxometaloborate building blocks, [LnK(H(2)O)(12)][Ln(H(2)O)(6)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·20H(2)O (Ln = Ce 1, Nd 2), H(2)K(2)(H(2)O)(n)[(C(6)NO(2)H(5))Ln(H(2)O)(5)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·18H(2)O (Ln = Ce n = 8 3, Nd n = 9 4, C(6)NO(2)H(5) = pyridine-4-carboxylic acid), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, and are built up of lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with one-dimensional (1D) channels. The polyoxoanion [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions, constituted by two [BW(11)O(39)H](8-) polyoxoanions and two lanthanide cations. When pyridine-4-carboxylic acid ligand was added to the reaction system of 1, 2, compounds 3, 4 were obtained. Isostructural compounds 3 and 4 are constructed from the lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by the [Ln(C(6)NO(2)H(5))](3+) bridges to form a 3D channel framework. From the topological point of view, the 3D nets of compounds 1-4 are binodal with three- and six-connected nodes and exhibit a rutile topology. Compounds 1-4 represent the examples of 3D architectures based on lanthanide-substituted polyoxometalates. The magnetic properties of compounds 1-4 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K.  相似文献   

3.
Two novel hybrid materials based on two kinds of octamolybdate anions and metal-organic frameworks (MOFs), namely, [Ag(8)(L(1))(4)(α-Mo(8)O(26))(β-Mo(8)O(26))(H(2)O)(3)]·H(2)O (1) and [Cu(I)(3.1)Cu(II)(0.5)(β-Mo(8)O(26))(0.5)(ζ-Mo(7)(VI)Mo(V)O(26))(0.5)(L(2))(2)(H(0.8)L(2))(0.5)] (2), where L(1) = 1,1'-(1,3-propanediyl)bis[2-(4-pyridyl)benzimidazole] and L(2) = 1,1'-(1,4-butanediyl)bis[2-(3-pyridyl)benzimidazole], have been successfully synthesized. Crystal structure analysis revealed that 1 is a three-dimensional (3D) framework constructed of silver(I)-organic sheets and two types of (Mo(8)O(26))(4-) isomers. Compound 2 is a rare 3D framework containing copper(I,II)-organic cages and 1D channels occupied by the (ζ-Mo(7)(VI)Mo(V)O(26))(5-) and (β-Mo(8)O(26))(4-) anions. The two compounds were characterized by elemental analysis, IR spectroscopy, diffuse reflectivity spectroscopy, and photoluminescent spectroscopy. In addition, the photocatalytic behavior of 1 was investigated.  相似文献   

4.
Six supramolecular compounds constructed by main group and transition metals, polyoxotungstates (SiW(12)O(40)(4-)) and trans-N,N,N',N'-1,2-cyclohexanediaminotetraacetic acid (H(4)CyDTA), (NH(4))(3)[Ni(4)Na(H(2)O)(10)(CyDTA)(2)][SiW(12)O(40)]·10H(2)O (1) (NH(4))(2)[Cu(3)Na(2)(HCyDTA)(2)(H(2)O)(13)][SiW(12)O(40)]·5H(2)O (2), (NH(4))(2)[Zn(5)(CyDTA)(2)(H(2)O)(16)][SiW(12)O(40)]·8H(2)O (3), (NH(4))(4)[Cd(4)(CyDTA)(2)(H(2)O)(8)][SiW(12)O(40)]·6H(2)O (4), (NH(4))(4)[Sr(3)(HCyDTA)(2)(H(2)O)(14)][SiW(12)O(40)]·2H(2)O (5) and [Ca(4)(H(2)CyDTA)(2)(H(2)O)(22)][SiW(12)O(40)]·8H(2)O (6), were synthesized in aqueous solution and characterized by IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction techniques. Single-crystal structure analyses indicate they are constructed by the complexes with different nuclearity and polyoxometalates. In the sequence of Ni, Cu, Zn the nuclearity of the homometallic complex units increases from 2 to 5. Cadmium ions gives a tetranuclear complex with a compact structure. In 5 and 6 the main group metal ions and CyDTA form polymeric chains. CyDTA exhibits rather different coordination patterns to main group metal ions and transition metal ions due to their ionic radii and electronic configuration. The complex units and polyoxometalates arrange in different patterns due to the different shapes of the complex units. The compounds exhibit different thermal decomposition processes and the formation of compounds 3 and 4 quenches ligand-centered emissions and gives a ligand-to-metal emission. The study on various temperature susceptibilities of 1 and 2 shows that there is an antiferromagnetic coupling in the two compounds but coupling patterns are different.  相似文献   

5.
The grafting of the triangular 1,3,5-benzene tricarboxylate linkers (denoted trim) on tetrahedral ε-Keggin polyoxometalates (POMs) capped by Zn(II) ions, formed in situ under hydrothermal conditions, has generated three novel POM-based metal organic frameworks (POMOFs). (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)][C(6)H(3)(COO)(3)](4/3)·6H(2)O (ε(trim)(4/3)) is a 3D open-framework built of molecular Keggin units connected by trim linkers, with channels occupied by tetrabutylammonium (TBA) counterions. ε(trim)(4/3) is a novel (3,4)-connected net, named ofp for open-framework polyoxometalate, and computer simulations have been used to evaluate its relative stability in comparison with ctn- and bor-like polymorphs, showing the stability of this novel phase directly related to its greatest density. A computational study was also undertaken with the aim of locating TBA molecules, the positions of which could not be deduced from single crystal X-ray diffraction, and further rationalizes their structure directing role. In (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)][C(6)H(3)(COO)(3)] (ε(2)(trim)(2)), the building unit is not the molecular Keggin but a dimerized form of this POM. Their connection via trim linkers generates a 3D framework with channels filled by TBA cations. In (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)][C(6)H(3)(COO)(3)]·8H(2)O ([ε(trim)](∞)), zigzag chains are connected via the organic linkers, forming 2D grids. Modified electrodes were fabricated by direct adsorption of the POMOFs on glassy carbon or entrapment in carbon paste (CPE). A remarkable electrocatalytic hydrogen evolution reaction (HER) was detected with a yield greater than 95%, and a turnover number as high as 1.2 × 10(5) was obtained after 5 h. The reported POMOF-based electrodes are more active than platinum, with a roughly 260 mV anodic shift. Finally, the electrocatalytic activities of ε(trim)(4/3)/CPE electrodes in various XCl (X = Li, Na, K, Cs) media have been studied. This allowed us to detect a cation effect and propose an electrocatalytic mechanistic pathway for the HER.  相似文献   

6.
Six inorganic-organic hybrid compounds, namely, [Cu(2)(2,4'-tmbpt)(2)(β-Mo(8)O(26))(H(2)O)(2)]·7H(2)O (), [Cu(2,4'-tmbpt)(γ-Mo(8)O(26))(0.5)(H(2)O)]·H(2)O (), [Co(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (), [Zn(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (), [Ni(2,4'-tmbpt)(α-Mo(8)O(26))(0.5)(H(2)O)]·2.5H(2)O () and [Ag(2,4'-Htmbpt)(β-Mo(8)O(26))(0.5)] (), have been synthesized under hydrothermal conditions (2,4'-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole). The structures of compounds have been determined by single-crystal X-ray diffraction analyses and characterized by infrared spectra (IR), elemental analyses, powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses (TGA). Compound shows a 3D (3,4)-connected framework constructed by the 2D Cu(ii)-organic fragments and [β-Mo(8)O(26)](4-) anions. Compound exhibits a 2D layer structure based on Cu(ii)-organic chains and [γ-Mo(8)O(26)] chains. The layers are extended into a 3D supramolecular framework by hydrogen-bonding interactions. Compounds and are isostructural, and display 1D chain structures. The chains are further interlinked by hydrogen-bonding interactions to form 3D supramolecular architectures. Compound shows a 3D framework based on the 2D Ni(ii)-organic fragments and [α-Mo(8)O(26)](4-) anions. In compound , the 1D chains constructed by the Ag(i) ions, 2,4'-Htmbpt ligands and [β-Mo(8)O(26)](4-) anions are extended by hydrogen-bonding interactions into a 2D supramolecular layer. Each layer threads into the adjacent layers, yielding a 2D → 3D interdigitated structure. Moreover, the photoluminescent properties of and , the optical band gaps of , and the photocatalytic properties of have also been investigated.  相似文献   

7.
Two novel three-dimensional (3D) extended vanadogermanate-based frameworks, [Co(pdn)(2)](3)[Co(2)(pdn)(4)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·5H(2)O (1), [Co(2)(en)(3)][Co(en)(2)](2)[Co(en)(2)(H(2)O)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·10.5H(2)O (2), (pdn = 1,2-propanediamine, en = ethylenediamine) have been synthesized under hydrothermal conditions via changing the organic amine. X-ray crystal structure analyses reveal that both frameworks are built of [V(16)Ge(4)O(44)(OH)(2)(H(2)O)](10-) anions and different Co-amine cations. They represent the first example of incorporating elemental Co into the extended vanadogermanate frameworks. Compound 1 shows a 3D framework with NaCl topology based on {V(16)Ge(4)} clusters as nodes, while compound 2 exhibits a 3D (4,6)-connected network with a Schl?fli symbol of (4(6)·6(7)·8(2))(2)(4(2)·6(4)), which is found for the first time in polyoxovanadate chemistry. The diverse types of metal-organoamine subunits play critical roles in the formation on the final structures. Furthermore, variable temperature susceptibility measurements on compounds 1 and 2 demonstrate the presence of anticipated rare ferrimagnetic behavior.  相似文献   

8.
The synthesis and photocatalytic properties of a heteropolyoxoniobate, K(10)[Nb(2)O(2)(H(2)O)(2)][SiNb(12)O(40)]·12H(2)O (1), are reported, revealing an important role of Zr(4+) additives in the crystallization. Compound 1 exhibits overall photocatalytic water splitting activity, and its photocatalytic activity is significantly higher than that of Na(10)[Nb(2)O(2)][SiNb(12)O(40)]·xH(2)O (2). Fluorescence lifetime measurements suggest that the enhanced photocatalytic activity of 1 likely results from a larger yield of longer-lived charge trapping states in 1 due to the coordination of one water molecule to the bridging Nb(5+), leading to highly unsymmetrical seven-coordinated Nb(5+) sites.  相似文献   

9.
Two novel 3d-4d heterometallic coordination polymers {[Cu(3)(bipy)(3)(H(2)O)(5)][Ag(6)(mna)(6)]·11.5H(2)O}(n) (1) and {[Zn(3)(eda)(3)(H(2)O)(4)][Ag(6)(mna)(6)]·8H(2)O}(n) (2) were synthesized based on a hexanuclear silver(I) metalloligand by a three-step synthetic method (bipy = 2, 2'-bipyridine, eda = ethylenediamine and H(2)mna = 2-mercaptonicotinic acid). The photoluminescence behaviors of 1 and 2 were also discussed.  相似文献   

10.
Utilizing 3,5-bis(x-pyridyl)-1,2,4-triazole (x-Hpytz, x = 3; x = 4) as multidentate ligands, six novel coordination polymers with Zn(II) or Cd(II) metal ions were prepared: [Zn(3-pytz)(0.5)(OH)(0.5)Cl](n) (1, 1D ladder), {[Zn(3-Hpytz)(H(2)O)(4)] [Zn(3-Hpytz)(H(2)O)(3)·SO(4)]SO(4)·5H(2)O}(n) (2·5H(2)O, 1D chain), [Cd(3-Hpytz)(SO(4))](n) (3, 3D framework), {[Cd(3-Hyptz)SO(4)·3H(2)O]·2H(2)O}(n) (4·2H(2)O, 1D chain), [Zn(4-pytz)Cl](n) (5, 3D framework) and [Zn(2)(4-pytz)(SO(4))(OH)](n) (6, 3D framework). All compounds were obtained from hydrothermal reactions, with the exception of compound 4 which was obtained by solvent diffusion at room temperature. All compounds were characterized by FTIR, elemental analysis and TGA analysis and their structures were determined by X-ray diffraction. All compounds exhibited substantial thermal stability and showed photofluorescent properties that resulted from ligand π-π* transition.  相似文献   

11.
Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.  相似文献   

12.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

13.
Reactions of a Pt(II)-diimine-based metalloligand Na(2)[Pt(CN)(2)(4,4'-dcbpy)] (4,4'-H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) with alkaline-earth metal salts Mg(NO(3))(2)·6H(2)O, CaCl(2), SrCl(2)·6H(2)O, and BaBr(2)·2H(2)O in aqueous solution gave luminescent complexes formulated as [Mg(H(2)O)(5)][Pt(CN)(2)(4,4'-dcbpy)]·4H(2)O (MgPt-4·9H(2)O), {[Ca(H(2)O)(3)][Pt(CN)(2)(4,4'-dcbpy)]·3H(2)O}(∞) (CaPt-4·6H(2)O), {[Sr(H(2)O)(2)][Pt(CN)(2)(4,4'-dcbpy)]·H(2)O}(∞) (SrPt-4·3H(2)O), and {[Ba(H(2)O)(2)][Pt(CN)(2)(4,4'-dcbpy)]·3H(2)O}(∞) (BaPt-4·5H(2)O), respectively. The crystal structures of all MPt-4 complexes were determined by X-ray crystallography. In these structures, the alkaline-earth metal ions are commonly coordinated to the carboxyl groups of the [Pt(CN)(2)(4,4'-dcbpy)](2-) metalloligand. In the case of MgPt-4·9H(2)O, the Mg(II) ion is bound by five water molecules and one oxygen atom of a carboxyl group to form a neutral complex molecule [Mg(H(2)O)(5)][Pt(CN)(2)(4,4'-dcbpy)]. In contrast, the alkaline-earth metal ion and metalloligand form two-dimensional (CaPt-4·6H(2)O) and three-dimensional (SrPt-4·3H(2)O and BaPt-4·5H(2)O) coordination networks, respectively. All fully hydrated complexes exhibited a strong phosphorescence from the triplet π-π* transition state. Luminescence spectroscopy revealed that MgPt-4·9H(2)O exhibited interesting multichromic (i.e., thermo-, mechano-, and vapochromic) luminescence, whereas CaPt-4·6H(2)O showed only thermochromic luminescence. The other two complexes did not exhibit any chromic behaviour. Combination analysis of powder X-ray diffraction, thermogravimetry, and IR spectroscopy suggests that the dimensionality of the coordination network contributes considerably to both the structural flexibility and luminescence properties; that is, the low-dimensional flexible coordination network formed in MPt-4 complexes with smaller alkaline-earth metal ions enables a structural rearrangement induced by thermal and mechanical stimuli and vapour adsorption, resulting in the observed multichromic behaviour.  相似文献   

14.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

15.
The reaction of a double-betaine-containing ligand with LnPMo(12)O(40)·nH(2)O (Ln = Dy, Tb and Er) led to the isolation of new polyoxometalate-templated lanthanide-organic hybrid layers with the molecular formula [Ln(L)(1.5)(H(2)O)(5)][PMo(12)O(40)]·1.5CH(3)CN·2H(2)O (Ln = Dy (1), Tb (2) and Er (3); L = 1,4-bis(pyridinil-4-carboxylato)-l,4-dimethylbenzene). All compounds were characterized by elemental analyses, TG analyses, IR and the single-crystal X-ray diffraction. Compounds 1-3 are isostructural and possess a 2D undulating cationic network [Ln(L)(1.5)(H(2)O)(5)](n)(3n+) with the honeycomb-like cavities. Interestingly, the interval 2D networks are further connected by the H-bonds to form a 3D supramolecular framework. Moreover, two of such identical supramolecular frameworks are 2-fold interpenetrated with each other and encapsulate the α-Keggin-type [PMo(12)O(40)](3-) anionic templates and the solvent molecules. These composite compounds display both luminescent properties (induced by organic ligands and/or lanthanide ions) and electrocatalytic activities towards the reduction of nitrite.  相似文献   

16.
The reactions of 1,2,3,4-benzenetetracarboxylic acid (H(4)mpda) and different silver(I) salts under hydrothermal or solvent evaporation conditions yielded four unusual coordination complexes with interesting frameworks: [Ag(4)(mpda)](n) (1), {[Ag(2.5)(mpda)(bpy)(2)]·[Ag(bpy)]·[Ag(bpy)(H(2)O)]·(NO(3))(0.5)·(H(2)O)(9)}(n) (2), {[Ag(5)(mpda)(2)(bpy)(4)]·[Ag(bpy)]·[Ag(bpy)(H(2)O)]·[Ag(bpy)(H(2)O)]·(H(2)O)(16)}(n) (3), {[Ag(2)(mpda)(H(2)O)]·[Ag(bpy)]·[Ag(bpy)]}(n) (4) (bpy = 4,4'-bipyridine). Complex 1 displays a novel (3,4,7)-connected {4.6(2)}{4.6(5)}{4(2).6(13).8(5).10} topology, in which the carboxylic groups of the mpda(4-) ligand adopt variable coordination modes. In 1, besides Ag-O coordination bonding, AgAg and Agaromatic intermolecular interactions also make their appearance. In complexes 2-4, rare architectures comprising three or four isolated coordination polymers within the same crystalline structure have been obtained, respectively. In 2 and 3, neighboring layers are linked together through water tapes into a three-dimensional supramolecular architecture, which is also consolidated by π···π stacking, while independent infinite rod-like polymer chains fill the void space between layers. Interestingly, an anionic (H(2)O-NO(3)(-))(n) layer, built from water tapes and nitrate anions as well as consolidated by the mpda(4-) ligands, has been structurally identified in compound 2. A new water tape constructed from alternating tetramers and decamers has been obtained in compound 3. In compound 4, a right-handed helical chain and two rod-like polymeric chains are interconnected through host-guest molecular recognition to generate a three-dimensional chiral supramolecular architecture. Bulk materials for 1 and 4 have second-harmonic generation activity, being approximately 0.6 and 0.4 times that of urea. The IR spectra, thermogravimetric analysis and luminescent properties of all compounds were also investigated.  相似文献   

17.
Wang X  Hu H  Tian A  Lin H  Li J 《Inorganic chemistry》2010,49(22):10299-10306
Three metal-organic networks based on Keggin-type polyoxometalates (POMs) have been hydrothermally synthesized by tuning the spacer lengths of bis(tetrazole)-functionalized thioether ligands and structurally characterized: [Cu(4)(bmtm)(4)][SiW(12)O(40)]·2H(2)O (1), [Cu(4)(bmte)(3.5)][SiW(12)O(40)] (2), and [Cu(4)(bmtp)(4)][SiW(12)O(40)] (3) [bmtm = 1,1'-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)methane, bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane, and bmtp = 1,5-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)pentane]. The spacer lengths and sulfhydryl of bis(tetrazole)-functionalized thioether ligands play important roles in the final framework formation, as shown by X-ray diffraction analysis. In compound 1, with the connection of a N,S bridge of bmtm, two kinds of binuclear Cu(I) units are formed and linked to construct a one-dimensional (1D) chain. The [SiW(12)O(40)](4-) (SiW(12)) cluster provides four terminal O atoms linking four binuclear units to generate a two-dimensional layer with (8(3))(2)(8(5)·10) topology. In compound 2, centrosymmetric octameric moieties composed of two equivalent tetrameric Cu(I) units are bridged by bmte ligands to form a 1D chain. The SiW(12) clusters show an unusual (2,8)-connected mode to connect with the 1D chain and construct a four-connected three-dimensional (3D) network with 5(3)·6(2)·7 topology. Compound 3 exhibits a rare 3D host framework with a type of large cavity and two types of small windows. The SiW(12) clusters as templates are strongly cemented into the large cavities and completely encircled by small windows. Furthermore, the compound 2 bulk-modified carbon-paste electrode (2-CPE) displays good electrocatalytic activity toward the reduction of nitrite.  相似文献   

18.
Five new materials built from polyoxotungstates and Cu(ii) ions as linkers have been synthesized by hydrothermal reactions from a mixture of sodium tungstate, copper chloride and bipyridine. The value of the initial pH, the nature of the heteroelement (P or Si) and of the ligand (2,2'- and/or 4,4'-bipyridine) permit the control of the nature of the polyoxotungstate clusters and their connectivity via the copper ions, and hence the dimensionality of the framework. A single phase has been obtained with silicon as heteroelement at an initial pH of 5, namely the 2D material [SiW(12)O(40)][Cu(2,2'-bpy)(2)](2).10H(2)O (1) with saturated Keggin polyoxotungstates linked by {Cu(2,2'-bpy)(2)}(2+) groups. With phosphorous as heteroelement and at the same initial pH, three different structures have been isolated according to the nature of the ligand. Indeed, the two 1D materials [{Cu(5)(2,2'-bpy)(5)(H(2)O)(HPO(4))(PO(4))}PW(11)CuO(39)].6H(2)O (2) with 2,2'-bpy and [4,4'-Hbpy][{Cu(2)(2,2'-bpy)(2)(4,4'-bpy)(2.5)}PW(11)CuO(39)].16H(2)O (3) with a mixture of 2,2'- and 4,4'-bpy have been characterized, and a coordination polymer with polyoxometalate guests Na(3)[4,4'-Hbpy]{Cu(4)(4,4'-bpy)(8)(H(2)O)(8)}[PW(11)CuO(39)(H(2)O)][PW(10)Cu(2)O(38)(H(2)O)(2)].38H(2)O (4) with 4,4'-bpy has been obtained. Finally, in basic medium (pH = 10) the unprecedented molecular cluster Na(2)[{Cu(8)(2,2'-bpy)(8)}(PW(8)O(31))(2)].15H(2)O (5) has been evidenced. Magnetic studies of compound 2 revealed that the predominant interactions involve only 4 paramagnetic centers, which are interacting within pairs, among the 6 Cu(ii) centers. The chi(M)T=f(T) curve can be fitted using the dinuclear expression appropriate to the HDVV isotropic exchange Hamiltonian H=-JS(1)xS(2), with S(1)=S(2)=(1/2) and J=-105.4 cm(-1), showing strong antiferromagnetic interactions within the two Cu(ii) pairs.  相似文献   

19.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

20.
Three new Mn(II) coordination compounds {[Mn(NCNCN)(2)(azpy)]·0.5azpy}(n) (1), {[Mn(NCS)(2)(azpy)(CH(3)OH)(2)]·azpy}(n) (2), and [Mn(azpy)(2)(H(2)O)(4)][Mn(azpy)(H(2)O)(5)]·4PF(6)·H(2)O·5.5azpy (3) (where azpy = 4,4'-azobis(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif. These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest π···π and C-H···N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (1D) chains of centrosymmetric [Mn(NCS)(2)(CH (3)OH)(2)] units which form a 2D porous sheet via a CH(3)···π supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist π···π, anion···π, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号