首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new general unitary transformation is obtained, which allows to get in a controllable manner the effective Hamiltonian of the Hubbard model at an arbitrary sign and value of the intraatomic constantU and for any given filling number of electrons per atomn. It is shown that atU<0 the effective Hamiltonian has a multipseudospin exchange form for an arbitrary filling and there exist hidden localSU(2) andU(1) gauge symmetries in the restricted Hilbert space.  相似文献   

2.
The magnetic properties of the one-dimensional Hubbard model with a hardcore interaction on a ring (periodic boundary conditions) are investigated. At finite temperatures it is shown to behave up to exponentially small corrections as a pure paramagnet. An explicit expression for the ground-state degeneracies is derived. The eigenstates of this model are used to perform a perlurbational treatment for large but finite interactions. In first order inU 1 an effective Hamiltonian for the one-dimensional Hubbard model is derived. It is the Hamiltonian of the one-dimensional Hcisenberg model with antiferromagnetic couplings between nearest neighbor spins. An asymptotic expansion for the ground-state energy is given. The results are valid for arbitrary densities of electrons.  相似文献   

3.
The tetrameric Ni(II) spin cluster Ni4Mo12 has been studied by INS. The data were analyzed extensively in terms of a very general spin Hamiltonian, which includes antiferromagnetic Heisenberg interactions, biquadratic 2-spin and 3-spin interactions, a single-ion magnetic anisotropy, and Dzyaloshinsky-Moriya interactions. Some of the experimentally observed features in the INS spectra could be reproduced, however, one feature at 1.65 meV resisted all efforts. This supports the conclusion that the spin Hamiltonian approach is not adequate to describe the magnetism in Ni4Mo12. The isotropic terms in the spin Hamiltonian can be obtained in a strong-coupling expansion of the Hubbard model at half-filling. Therefore detailed theoretical studies of the Hubbard model were undertaken, using analytical as well as numerical techniques. We carefully analyzed its abilities and restrictions in applications to molecular spin clusters. As a main result it was found that the Hubbard model is also unable to appropriately explain the magnetism in Ni4Mo12. Extensions of the model are also discussed.  相似文献   

4.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

5.
The strong-coupling perturbation theory of the Hubbard model is presented and carried out to order (t/U)5 for the one-particle Green function in arbitrary dimension. The spectral weight is expressed as a Jacobi continued fraction and compared with new Monte-Carlo data of the one-dimensional, half-filled Hubbard model. Different regimes (insulator, conductor and short-range antiferromagnet) are identified in the temperature-hopping integral (T,t) plane. This work completes a first paper on the subject (Phys. Rev. Lett. 80, 5389 (1998)) by providing details on diagrammatic rules and higher-order results. In addition, the non half-filled case, infinite resummations of diagrams and the double occupancy are discussed. Various tests of the method are also presented. Received 25 October 1999  相似文献   

6.
The recent neutron scattering data for spin-wave dispersion in HoMnO3 are well-described by an anisotropic Hubbard model on a triangular lattice with a planar (XY) spin anisotropy. Best fit indicates that magnetic excitations in HoMnO3 correspond to the strong-coupling limit U/t >∼ 15, with planar exchange energy J = 4t 2 /U ≃ 2.5 meV and planar anisotropy ΔU ≃ 0.35 meV.   相似文献   

7.
The asymmetric correlated-hopping Hubbard model is analysed perturbatively for large values of the Coulomb interaction U. An effective Hamiltonian is obtained up to terms of the order U –3. For d=2 and in the limit of the strong asymmetry, the orderings of the ground states are found (confirming earlier nonrigorous results). Their thermal and quantum stability is proved. These results have been obtained by an application of the quantum Pirogov–Sinai theory in the variant developed by Datta, Fernandez, Fröhlich, and Rey-Bellet.  相似文献   

8.
《Nuclear Physics B》2001,592(3):512-562
A continuous sequence of infinitesimal unitary transformations is used to diagonalize the quantum sine-Gordon model for β2∈(2π,∞). This approach can be understood as an extension of perturbative scaling theory since it links weak- to strong-coupling behavior in a systematic expansion: a small expansion parameter is identified and this parameter remains small throughout the entire flow unlike the diverging running coupling constant of perturbative scaling. Our approximation consists in neglecting higher orders in this small parameter. We find very accurate results for the single-particle/hole spectrum in the strong-coupling phase and can describe the full crossover from weak to strong-coupling. The integrable structure of the sine-Gordon model is not used in our approach. Our new method should be of interest for the investigation of nonintegrable perturbations and for other strong-coupling problems.  相似文献   

9.
The Heisenberg spin-S quantum antiferromagnet is studied near the large-spin limit, applying a new continuous unitary transformation which extends the usual Bogoliubov transformation to higher order in the 1/S-expansion of the Hamiltonian. This allows to diagonalize the bosonic Hamiltonian resulting from the Holstein-Primakoff representation beyond the conventional spin-wave approximation. The zero-temperature flow equations derived from the extension of the Bogoliubov transformation to order for the ground-state energy, the spin-wave velocity, and the staggered magnetization are solved exactly and yield results which are in agreement with those obtained by a perturbative treatment of the magnon interactions. Received: 19 March 1998 / Revised: 2 June 1998 / Accepted: 8 June 1998  相似文献   

10.
Excitons in strong coupling polyatomic crystals   总被引:3,自引:0,他引:3  
In this paper, the effective Hamiltonian of the exciton in strong-coupling polyatomic crystals is obtained by the method of a linear combination operator and a simple unitary transformation. The self-trapping energy of the exciton could be written as a series in -1, the first term being proportion to , the coupling constant. The selftrapping energy contains an extra contribution due to crossed terms between the different phonon branches.  相似文献   

11.
The coupling of antiferromagnetic spin excitations and propagating holes has been studied theoretically on a square lattice in order to investigate the dependence of antiferromagnetic order on hole doping, being of relevance, e.g., for the Cu–3 d9 system in antiferromagnetic CuO2-planes of high-Tc superconductors. An effective Hamiltonian has been used, which results from a 2D Hubbard model (hopping integral t) with holes and with strong on-site Coulomb repulsion U. Bare antiferromagnetic excitations and holes with energies of the same order of magnitude t2/U are interacting via a coupling term being proportional to t and allowing holes to hop by emitting and absorbing spinwaves. In terms of a self-consistent one-loop approximation the renormalization of the spectral function both of holes and antiferromagnetic spin excitations are calculated.  相似文献   

12.
The article presents the renormalization group treatment to the Hubbard model. To begin with, the bosonization of Hubbard model Hamiltonian is performed. We have obtained the sine-Gordon Hamiltonian. We have further approximated this Hamiltonian by the Hamiltonian of 4-theory. Then we utilized Wilson's results of the renormalization group method and obtained the recursion formula for the Hubbard model. Having solved these formulas we have obtained the critical indices for the Hubbard model.  相似文献   

13.
Using continuous unitary transformations recently introduced by Wegner [1], we obtain flow equations for the parameters of the spin-boson Hamiltonian. Interactions not contained in the original Hamiltonian are generated by this unitary transformation. Within an approximation that neglects additional interactions quadratic in the bath operators, we can close the flow equations. Applying this formalism to the case of Ohmic dissipation at zero temperature, we calculate the renormalized tunneling frequency. We find a transition from an untrapped to trapped state at the critical coupling constant α c =1. We also obtain the static susceptibility via the equilibrium spin correlation function. Our results are both consistent with results known from the Kondo problem and those obtained from mode-coupling theories. Using this formalism at finite temperature, we find a transition from coherent to incoherent tunneling atT 2 * ≈2T 1 * , whereT 1 * is the crossover temperature of the dynamics known from the NIBA.  相似文献   

14.
We give picture-covariant formulations of the equations of motion for observables and states such that the Hamiltonian operator is transformed asH-0304;=U(t)HU (t) under a time-dependent unitary transformationU(t). Next, we consider the explicit and implicit covariance of Heisenberg's equations of motion for observables with respect to general transformations of coordinate operators. Most of our representation is spread out over a number of textbooks and articles, where the subject has been considered with greater or lesser clarity from different points of view.  相似文献   

15.
16.
A Monte-Carlo procedure is given for the two-dimensional (2-D) Hubbard model using the Suzuki-Trotter transformation. The resulting three-dimensional (3-D) classical model does not have the usual problems with negative transition probabilities in the large-U limit (U-repulsive interactions). Numerical simulations based on the algorithm described are expected to be of importance for the theory of high-T c superconductivity.  相似文献   

17.
18.
We show that, by means of a right-unitary transformation, the fully quantized Landau-Zener Hamiltonian in the weak-coupling regime may be solved by using known solutions from the standard Landau-Zener problem. In the strong-coupling regime, where the rotating wave approximation is not valid, we show that the quantized Landau-Zener Hamiltonian may be diagonalized in the atomic basis by means of a unitary transformation; hence allowing numerical solutions for the few photons regime via truncation.  相似文献   

19.
We use perturbative continuous unitary transformations (PCUT) to study the one dimensional extended ionic Hubbard model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, V. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system; (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V = 0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of V there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion U is to split singlet and triplet collective excitation branches, while V tends to pull the singlet branches below the continuum to make them bound states.  相似文献   

20.
We present the exact solution of the simplified Hubbard model in which only one kind of electrons can hop and this quantum mechanical hopping of electrons is assumed to be unconstrained. It is shown that the model still behaves nontrivially, although it no longer depends on the lattice structure and the dimensionality of the system. For this case we find: (i) a gap in the ground state energy always exists at the half-filled band point (n=1), (ii) a preferred magnetic state atn=1 and largeU is a total spin singlet, (iii)U-dependence of the ground state energy has qualitatively the same form as one of the conventional Hubbard model with the (t 2/U)-behavior at largeU. A phase diagram of the model is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号