首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell attachment and spreading on solid surfaces was investigated with a home-made quartz crystal microbalance (QCM), which measures the frequency, the transient decay time constant and the maximal oscillation amplitude. Initial interactions of the adsorbing cells with the QCM mainly induced a decrease of the frequency, coincident with mass adsorption. After about 80 min, the frequency increased continuously and after several hours exceeded the initial frequency measured before cell adsorption. Phase contrast and fluorescence microscopy indicated that the cells were firmly attached to the quartz surface during the frequency increase. The measurements of the maximal oscillation amplitude and the transient decay time constant revealed changes of viscoelastic properties at the QCM surface. An important fraction of these changes was likely due to alterations of cytosolic viscosity, as suggested by treatments of the attached cells with agents affecting the actin and microtubule cytoskeleton. Our results show that viscosity variations of cells can affect the resonance frequency of QCM in the absence of apparent cell desorption. The simultaneous measurements of the maximal oscillation amplitude, the transient decay time constant and the resonance frequency allow an analysis of cell adsorption to solid substratum in real time and complement cell biological methods.  相似文献   

2.
Contact of a polymer gel made from a styrene/ethylene-butene/styrene triblock copolymer in mineral oil was investigated by bringing the gel into contact with the coated surface of a quartz crystal microbalance (QCM). The experimental apparatus enabled simultaneous measurement of the load, displacement, and contact area, in addition to the resonant frequency and dissipation of the oscillating quartz crystal. The QCM response was determined by the linear viscoelastic properties of the gel at the frequency of oscillation. A geometric correction factor involving the contact area provided a means for quantitatively determining these viscoelastic parameters as the gel spread over the QCM surface. When the gel was removed from the surface, a thin solvent layer was left behind. The thickness of this solvent layer was determined from the QCM response and was compared to predictions from a simple model involving the disjoining pressure of the film and the osmotic pressure of the gel. Qualitative agreement with the model required that tensile, adhesive forces at the perimeter of the gel/QCM contact area were taken into account when calculating the film thickness.  相似文献   

3.
An investigation into the evaporation of sessile droplets of latex and clay particle suspensions is presented in this work. The quartz crystal microbalance (QCM) has been used to study the interfacial phenomena during the drying process of these droplets. Characteristic changes of the crystal oscillating frequency and crystal resistance (damping of the oscillating energy) have been observed and related to the different stages of the evaporation process. Measurements have been made for latex particle sizes from 1.9 to 10 microm and for rough and polished crystals using drops from 0.3 to 1.5 microL. The behavior of the QCM is shown to depend strongly on the size of particles present and on the morphology of the crystal surface. One of the most striking features is a drastic damping of the oscillation energy and corresponding rise in frequency observed during the final stages of evaporation, particularly for the clay suspensions.  相似文献   

4.
Superhydrophobic films with hierarchical micro-nano structures were deposited on glass substrates by solution immersion method from a solution containing cobalt chloride, urea and cetyl trimethyl ammonium bromide (CTAB). Subsequently the films were hydrophobized with a low surface energy material like octadecanoic acid under ambient conditions resulting in superhydrophobic surfaces with water contact angle (WCA) of about 168° and contact angle hysteresis of 1°. The effect of deposition parameters such as solution composition, temperature, deposition time and alkanoic acid treatment on surface morphology and wettability of the films was studied. Mechanism of formation of cobalt chloride carbonate hydroxide film is discussed. Addition of CTAB to the solution resulted in a change in the surface morphology of the deposited films with flower-like structures. The wettability of films obtained under different process conditions was correlated to surface roughness using Wenzel and Cassie models.  相似文献   

5.
The quartz crystal microbalance (QCM) has been increasingly utilized in the monitoring of the deposition of thin macromolecular films. Studies in the deposition of polymers, biomaterials, and interfacial reactions under electrochemical environment are some of the conditions for the study of these material and deposition properties at a lipid interface. Numerous studies have shown the difficulties in configuring an experimental setup for the QCM such that the recorded data reflect only the behavior of the quartz crystal and its load, and not some artifact. Such artifacts for use in liquids include mounting stress, surface properties such as hydrophobicity, surface roughness coupling to loading liquids, influence of compressional waves, and even problems with the electronic circuitry including the neglect of the quartz capacitance and the hysteretic effects of electronic components. It is thought useful to obtain a simple test by which the user could make a quick initial assessment of the instrument's performance. When a smooth quartz crystal resonator is immersed from air into a Newtonian liquid, the resonance and loss characteristics of the QCM are changed. A minimum of two experimental parameters is needed to characterize these changes. One of the changes is that of the resonant frequency. The second is characterized by either a change in the equivalent circuit resistance (DeltaR) or a change in the resonance dissipation (DeltaD). Two combinations of these observables, in terms of either Deltaf and DeltaR or Deltaf and DeltaD, which we define as Newtonian signatures of S(1) and S(2), are calculated to have fixed values and to be independent of the harmonic and of the physical values of the Newtonian liquid. We have experimentally determined the values of S(1) and S(2) using three different QCM systems. These are the standard oscillator, the network analyzer, and the QCM dissipation instrument. To test the sensitivity of these signatures to surface roughness, which is potential experimental artifact, we determined the values of S(1) and S(2) for roughened crystals and found that these signatures do reflect that experimental condition. Moreover, these results were qualitatively in accord with the roughness scaling factor described by Martin.  相似文献   

6.
The adsorption of extracted and purified samples of asphaltenes and resins onto gold surfaces has been studied as a function of bulk concentration using a quartz crystal microbalance with dissipation measurements (QCM-D). With this device, which works equally well in transparent, opaque, and nontransparent samples, the adsorbed amount is measured through a change in resonant frequency of the quartz oscillator. The measured change in dissipation reports on changes in layer viscoelasticity and slip of the solvent at the surface. The results show that the adsorbed amount for resins from heptane corresponds to a rigidly attached monolayer. The adsorbed amount decreases with increasing amount of toluene in the solvent and is virtually zero in pure toluene. Asphaltenes, on the other hand, adsorb in large quantities and the mass and dissipation data demonstrate the presence of aggregates on the surface. The aggregates are firmly attached and cannot be removed by addition of resins. On the other hand, resins and asphaltenes associate in bulk liquid and the adsorption from mixtures containing both resins and asphaltenes is markedly different from that obtained from the pure components. Hence, we conclude that preformed resin aggregates adsorb to the surface. These results are compared and discussed in relation to adsorption from crude oil diluted in heptane/toluene mixtures.  相似文献   

7.
We have characterized the immobilization of thiol-modified oligomers on Au surfaces and subsequent hybridization with a perfectly matched or single-base mismatched target using a quartz crystal microbalance (QCM) and fluorescence spectroscopy. The surface density of immobilized probe molecules and the hybridization efficiency depending on the type of buffer and salt concentration were investigated. We observed some ambiguities in surface coverage deduced from QCM measurement and adopted a complementary fluorescence displacement method. Direct comparison of surface coverage deduced from frequency change in QCM measurement and determined by the fluorescence exchange reaction revealed that QCM results are highly overestimated and the amount of overestimation strongly depends on the type of buffer and the structure of the film. Discrimination capability of the surface attached 15-mer probe was also examined using a single-base mismatched target at various hybridization temperatures. Hybridization efficiency depending on the type of single base mismatch was investigated using surface plasmon resonance (SPR).  相似文献   

8.
A contact mechanics methodology utilizing the quartz crystal microbalance (QCM) has been applied to study the spreading behavior of polymer solutions and gels. Changes in the resonant frequency and in the dissipation are monitored as these materials are brought into contact with the electrode surface of the QCM. The primary application is in studies of elastic polymer gels, where spreading over the surface of the QCM is limited by the elasticity of the gel. Simultaneous measurement of the applied loads and displacements, along with measurement of the QCM/gel contact area, the frequency shift, and the dissipation, enable us to calibrate the QCM as a contact sensor. While changes in the frequency and dissipation both depend linearly on the contact area, measurements of the dissipation provide a more reliable indicator. The relationship between the dissipation and the contact area is determined by the solvent viscosity and by the high-frequency intrinsic viscosity of the system of interest. This result is consistent with previous results on the high-frequency rheological behavior of polymer solutions.  相似文献   

9.
We have observed that when mobile adsorbed films of benzene, tricresyl phosphate, and tertiary-butyl phenyl phosphate are present on the surface electrode of a quartz crystal microbalance (QCM), oscillation of the QCM produces clearer scanning tunneling microscope (STM) images of the electrode surface. This is in contrast to an immobile overlayer of iodobenzene, where oscillation of the QCM does not affect image quality. This observation is attributed to a "windshield wiper effect", where at MHz frequencies the tip motion maintains a region of the surface where the absorbate concentration is reduced, which leads to a clearer image. A straightforward model is presented that supports this conclusion and that provides guidelines for effective lubrication of contacts operating at MHz frequencies.  相似文献   

10.
Optically active ethynylhelicene pentamers and hexamers linked by disulfide bonds were synthesized. They formed self-assembled monolayers (SAMs) with double helix structure on gold surfaces, which were analyzed by infrared reflection-absorption spectroscopy (IR-RAS), quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and circular dichroism (CD). Double helix SAMs could be formed on gold surfaces either from double helices or random coils in solution. The double helices on the surface were more stable than in solution. This result suggested the presence of strong intercomplex interactions between double helix complexes on the surface.  相似文献   

11.
Measurements of the hygroscopic properties of aerosols are needed to better understand the role of aerosols as cloud condensation nuclei. Several techniques have been used to measure deliquescence (solid to liquid) phase transitions in particular. In this study, we have measured the deliquescence relative humidity (DRH) of organic and inorganic salts, organic acids (glutaric and succinic acid), and mixtures of organic acids with ammonium sulfate using a quartz crystal microbalance (QCM). The QCM allows for measurement of the deliquescence phase transition due to inherent measurement differences between solids and liquids in the oscillation frequency of a quartz crystal. The relative humidity dependent frequency measurements can be used to identify compounds that adsorb monolayer amounts of water or form hydrates prior to deliquescence (e.g., lithium chloride, potassium and sodium acetate). Although the amount of water uptake by a deliquescing material cannot be quantified with this technique, deliquescence measurements of mixtures of hygroscopic and nonhygroscopic components (e.g., ammonium sulfate and succinic acid (DRH > 95%)) show that the mass fraction of the deliquescing portion of the sample can be quantitatively determined from the relative change in oscillation frequency at deliquescence. The results demonstrate the use of this technique as an alternative method for phase transition measurements and as a direct measurement of the mass fraction of a sample that undergoes deliquescence. Further, deliquescence measurements by the QCM may provide improved understanding of discrepancies in atmospheric particle mass measurements between filter samples and the tapered element oscillating microbalance given the similar measurement principle employed by the QCM.  相似文献   

12.
The temperature-dependent properties of pre-adsorbed layers of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) were investigated on silica and hydrophobized silica surfaces. Three different techniques, quartz crystal microbalance with dissipation monitoring, ellipsometry, and atomic force microscopy imaging, were used, providing complementary and concise information on the structure, mass and viscoelastic properties of the polymer layer. Adsorption was conducted at 25 °C, followed by a rinsing step. The properties of such pre-adsorbed layers were determined as a function of temperature in the range 25 °C to 50 °C. It was found that the layers became more compact with increasing temperature and that this effect was reversible, when decreasing the temperature. The compaction was more prominent for MC, as shown in the AFM images and in the thickness data derived from the QCM analysis. This is consistent with the fact that the phase transition temperature is lower, in the vicinity of 50 °C, for MC than for HPMC. The water content of the adsorbed layers was found to be high, even at the highest temperature, 50 °C, explored in this investigation.  相似文献   

13.
The nature of hexaethylene glycol mono-n-tetradecyl ether (C(14)EO(6)) layers adsorbed onto different model surfaces was systematically investigated by means of QCM-D (quartz crystal microbalance-dissipation) and ellipsometry. The amount of non-ionic surfactant adsorbed is determined both at hydrophilic and hydrophobic surfaces. In particular, the substrates employed were hydrophilic silica, hydrophobized silica (using dimethyldichlorosilane), and hydrophobized gold surfaces (using 10-thiodecane and 16-thiohexadecane). It was shown that the frequency shift obtained from the QCM-D experiments results in an overestimation of the adsorbed mass. This is attributed to two different effects, viz. water that is coupled to the adsorbed layer due to hydration of the polar region of the surfactant and second water that for other reasons is trapped within the adsorbed layer. Furthermore, from the ellipsometry data the adsorbed layer thickness is determined. By combining the thickness information and the dissipation parameter (obtained from the QCM-D experiments), we note that the dissipation parameter is insufficient in describing the viscoelastic character of thin surfactant films.  相似文献   

14.
Two polyester textiles, conventional polyester and microfiber polyester fabrics, were hydrophobized using a simple, patented water-repellent silicone coating procedure. Water contact angles on these two surfaces are theta(A)/theta(R) = 151 degrees/140 degrees and theta(A)/theta(R) = 170 degrees/165 degrees, respectively. A smooth surface of this of this coating exhibits theta(A)/theta(R) = 110 degrees/100 degrees. The binary length scale topography (approximately 2 microm/ approximately 50 microm) of the microfiber polyester is responsible for relieving receding contact line pinning and promoting water repellency that is superior to that of the lotus leaf. The recent literature on superhydrophobic surfaces is criticized for neglecting literature of the 1940s.  相似文献   

15.
A study of biospecific interactions between lectins and glycoproteins using a quartz crystal microbalance biosensor with dissipation monitoring (QCM-D) was reported. Four lectins were covalently immobilised on the thiol-modified gold electrode of the QCM chips in order to obtain sensing surfaces. The frequency shift served as analytical signal and the dissipation shift provided additional information about the viscoelastic properties of the glycoprotein-lectin complex formed on the surface of the QCM chip. The working conditions of the assay were optimised. The interaction between different lectins and glycoproteins was characterised by specific frequency shifts and each glycoprotein displayed its own unique lectin-binding pattern. This lectin pattern can serve as a finger print for the discrimination between various glycoproteins. The biosensor enabled quantitative determination of glycoproteins in the concentration range of 50 μg mL−1 to 1 mg mL−1 with good linearity and R.S.D. of less than 6.0%. An additional advantage of the proposed biosensor was the possibility to re-use the same lectin surfaces during a long period of time (2 month) without changes in analytical response. This was experimentally achieved by the application of a proper regeneration solution (10 mM glycine-HCl, pH 2.5). The lectin-based quartz crystal microbalance technique is suitable both for rapid screening and for quantitative assay of serum glycoproteins.  相似文献   

16.
孙彬  吕建华  金晶  赵桂艳 《应用化学》2020,37(10):1127-1136
石英晶体微天平(QCM)是一种基于石英晶体压电效应的分析检测技术,可实时在线提供石英晶体表面吸附层质量、厚度、粘弹性等信息,由此获得表面分子相互作用关系。 耗散型石英晶体微天平(QCM-D)因其独特的对粘弹性的解析,使其在高分子材料中的应用迅速发展,尤其是生物医用高分子材料领域,已用来评价生物医用高分子材料的表界面相互作用,力学和生物相容性等。 本文简单介绍了耗散型石英晶体微天平的基本原理及理论模型,重点综述了近几年QCM-D在高分子链构象、蛋白质吸附、生物大分子相互作用、药物释放以及水凝胶中的应用,并且展望了QCM-D的未来发展趋势。  相似文献   

17.
《中国化学快报》2020,31(8):2125-2128
This work reports a superhydrophobic divinylbenzene polymer with hierarchical porous structure as sensing material to modify the quartz crystal microbalance (QCM) to detect benzene, toluene, ethylbenzene, and xylene (BTEX) vapor. Notably, sensing results toward toluene vapor in different relative humidities indicates that this superhydrophobic polymer has favorable toluene/water selective detection performance. Besides, the limit of detection toward toluene is lower than 1 ppm.  相似文献   

18.
The quartz crystal microbalance (QCM) was used to study the variability of acoustic properties of living cells on the sub-second time scale. A confluent cell layer of rat cardiac myocytes was grown onto the electrode of quartz crystal resonator. The cell layer performed periodic, synchronous contractions at a rate of about 1.5 Hz. In order to monitor these rather fast changes in the state of the cells, the QCM was operated in a "fast mode", which allows sampling of the shift of the resonance frequency and energy dissipation with a rate of up to 100 Hz. The contractions were clearly reflected in periodic variations of the resonance frequency and the bandwidth. The rate of the contractions, in particular, could be easily detected in this way. Building on the rate of contraction, the setup can be used to monitor the response of the cell layer to heart stimulating drugs like isoproterenol. Depending on the concentration of isoproterenol, the beat rate was found to increase by up to a factor of two.  相似文献   

19.
以砂纸为模板制作聚合物超疏水表面   总被引:7,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

20.
In this paper we present a simple method allowing for stable laccase immobilization on various conducting surfaces that retains the activity of the enzyme. The strategy for laccase immobilization presented in this paper relies on Zr(4+) ion coordination chemistry that involves -COO- terminal groups present on the protein. Using a host of techniques, including surface plasmon resonance (SPR), quartz crystal microbalance (QCM) gravimetry, atomic force microscopy (AFM), surface enhanced Raman scattering (SERS), resonance Raman scattering (RR) and electrochemical techniques, we show that laccase bound to a surface coordinatively through zirconium phosphonate/carboxylate (ZPC) functionalities forms a stable enzymatic layer with the enzyme retaining its activity to a significant extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号