首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Products of the reaction of nido-1,2-(CpRuH)(2)B(3)H(7), 1, and phenylacetylene demonstrate the ways in which cluster metal and main group fragments can combine with an alkyne. Observed at 22 degrees C are (a) reduction to mu-alkylidene Ru-B bridges (isomers nido-1,2-(CpRu)(2)(1,5-mu-C{Ph}Me)B(3)H(7), 2, and nido-1,2-(CpRu)(2)(1,5-mu-C{CH(2)Ph}H)B(3)H(7), 3), (b) reduction to exo-cluster alkyl substituents on boron (nido-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-B(3)H(6), 4), (c) cluster insertion with extrusion of a BH(2) fragment into an exo-cluster bridge (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-4-or-5-Ph-4,5-C(2)B(2)H(5), 5), (d) combined insertion with BH(2) extrusion and reduction (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-3-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(2)H(4), 6), (e) insertion and loss of borane with and without reduction (nido-1,2-(CpRu)(2)-5-Ph-4,5-C(2)B(2)H(7), 7, and isomers nido-1,2-(CpRu)(2)-3-CH(2)CH(2)Ph-4-(and-5-)Ph-C(2)B(2)H(6), 8 and 9), and (f) insertion and borane loss plus reduction (nido-1,2-(CpRu)(2)-3-(trans-CH=CHPh)-5-Ph-4,5-C(2)B(2)H(6), 10). Along with 7, 8, and 10, the reaction at 90 degrees C generates products of insertion and nido- to closo-cluster closure (closo-4-Ph-1,2-(CpRuH)(2)-4,6-C(2)B(2)H(3), 11, closo-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-5-Ph-7-CH(2)CH(2)Ph-4,5-C(2)B(3)H(2), 12, closo-1,2-(CpRuH)(2)-5-Ph-4,5-C(2)B(3)H(4), 13, and isomers closo-1,2-(CpRuH)(2)-3-and-7-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(3)H(3), 14 and 15). The clusters with an exo-cluster bridging BH(2) groups are shown to be intermediates by demonstrating that the major products 5 and 6 rearrange to 13 and convert to 14, respectively. 14 then isomerizes to 15, thus connecting low- and high-temperature products. Finally, all available information shows that the high reactivity of 1 with alkynes can be associated with the "extra" two Ru-H hydrides on the framework of 1 which are required to meet the nido-cluster electron count.  相似文献   

2.
The equimolar reaction of 1-SH-2-R-1,2-closo-C2B10H10(R=Me, H, Ph) with KOH in ethanol produces the thiolate species [1-S-2-R-1,2-closo-C2B10H10]-. These react with iodine to give the disulfide bridged dicluster (1-S-2-R-1,2-closo-C2B10H10)2(R=H, Me, Ph) compounds as analytically pure, white and air-stable solids in high yield. Synthesis of monothioether bridged species is synthetically more difficult. In fact three procedures have been tested to obtain the thioether bridged dicluster compounds (2-R-1,2-closo-C2B10H10)2S (R=Me, H, Ph) but only (2-Me-1,2-closo-C2B10H10)2S was successfully synthesized and characterized. Attempts to produce mixed compounds (1-R-1,2-closo-C2B10H10)S(1-R'-1,2-closo-C2B10H10), R not=R', were unsuccessful. Deboronation reaction of this dicarboranylthioether lead, depending on the reaction conditions, to monoanionic [(2-Me-1,2-closo-C2B10H10)S(8-Me-7,8-nido-C2B9H10)]- or dianionic [(8-Me-7,8-nido-C2B9H10)2S]2- sulfur bridge anions. Deboronation of carboranyl disulfides gave the corresponding dianionic [(7-S-8-R-7,8-nido-C2B9H10)2]2-(R=H, Me, Ph) species. This reaction was very dependent, however, on the reaction conditions. With slight variation of the reaction conditions, splitting of the S-S bond leading to the thiolate species with retention of the closo cluster was also found. Carboranyl disulfides (1-S-2-R-1,2-closo-C2B10H10)2(R=H, Me, Ph) do not lead to thiosulfinates R-S(O)-S-R' by oxidation with H2O2 or I2 as organic disulfides do. This behaviour is attributed to the presence of the sulfur atom directly bonded to the carbon cluster that produces electronic transfer from the filled orbitals on the sulfur atom into the cage LUMO (largely located on the cage Cc-Cc bond). This causes a depletion of electron density on the sulfur, thence impairing sulfur oxidation, and facilitating S-S breaking. Crystal structures of monothioethers (2-Me-1,2-closo-C2B10H10)2S, [NMe4][(2-Me-1,2-closo-C2B10H10)S(8-Me-7,8-nido-C2B9H10)](the first example reported in the literature of a two cluster compound incorporating the closo C2B10 and the nido[C2B9]- moieties linked by a one member spacer) and disulfides (1-S-1,2-closo-C2B10H11)2, (1-S-2-Me-1,2-closo-C2B10H10)2, (1-S-2-Ph-1,2-closo-C2B10H10)2 are reported which support the behaviour of these species.  相似文献   

3.
Reaction of the lithium salt Li[1-R-1,2-closo-C(2)B(10)H(10)] with selenium under mild conditions, followed by hydrolysis gave the diselenide compound (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) in contrast to the well-reported mercapto compounds 1-SH-2-R-1,2-closo-C(2)B(10)H(10) obtained using a similar synthetic procedure. Details for the preparation and X-ray structural characterisation of the new compounds (2-Me-1,2-closo-C(2)B(10)H(10))(2)Se, (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) (R = Me, Ph, ) are specified. To further explore the mechanism of the dimerization reaction, the complex [Au(1-Se-2-Me-1,2-closo-C(2)B(10)H(10))(PPh(3))] was synthesized, confirming the existence of the intermediate Li[1-Se-2-R-1,2-closo-C(2)B(10)H(10)] at the early stages of the reaction before selenium oxidation. Theoretical calculations and cyclic voltammetry (CV) studies were carried out to compare the bonding nature of the sulfur and the selenium analog compounds. It was determined that diselenides have a higher tendency to reduce with respect to the disulfides and all chalcogen atoms were found to be positively charged.  相似文献   

4.
Neutral and especially dianionic 6- and 12-vertex closo ortho-carboranes (o-carboranes) 1,2-R2-1,2-C2BnHn (R = H, CH3, NH2, OH, F, SiH3, PH2, SH, Cl, as well as e-, CH2-, NH-, O-, SiH2-, PH-, and S- exhibit extremely large variations (over 1 A!) of the cage CC distances, from 1.626 to 2.638 A, at the B3LYP/6-31G//B3LYP/6-31G DFT level. These CC "bond lengths," among the longest ever reported, generally are greater in the icosahedral than those in the corresponding octahedral systems and depend strongly on the substituents. While 1,2-(NH2)2-1,2-C2B10H10 has the longest Cc...Cc separation in neutral species (1.860 A), Cc...Cc distances can be much larger in the corresponding dianions. These range from 1.823 A (R- = e-) to 2.638 A (R- = CH2-) for 1,2-(R-)2-1,2-C2B10H10 and from 1.626 A (R- = SiH2-) to 3.099 A (R- = NH-) for 1,2-(R-)2-1,2-C2B4H4. Remarkably, there is no abrupt discontinuity over the entire range of CC lengths. Consequently, the relationship between the gradual changes in the distances and the nature of the bonding was analyzed by means of the form of the Kohn-Sham orbitals, the Wiberg Cc...Cc bond indices, and Bader AIM method. Cluster carboranes, and possibly other heteroboranes, thus appear to offer unique opportunities for modulating Cc...Cc distances.  相似文献   

5.
Reduction of the tethered carborane 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) followed by metallation with {CpCo} or {(p-cymene)Ru} fragments affords both C,C'-dimethyl 4,1,2-MC(2)B(10) and 4,1,6-MC(2)B(10) species. DFT calculations indicate that the barriers to isomerisation of both 4-Cp-4,1,2-closo-CoC(2)B(10)H(12) and 4-(η-C(6)H(6))-4,1,2-closo-RuC(2)B(10)H(12) to their respective 4,1,6-isomers are too high for this to be the origin of the unexpected formation of 4,1,6-MC(2)B(10) products (in marked contrast to the related isomerisation of 1,2-closo-C(2)B(11)H(13) to 1,6-closo-C(2)B(11)H(13)), and, indeed, the 4,1,2-species are recovered unchanged from refluxing toluene. Equally, the DFT-calculated profile for the isomerisation of [7,8-nido-C(2)B(10)H(12)](2-) to [7,9-nido-C(2)B(10)H(12)](2-) suggests that the unexpected formation of 4,1,6-metallacarboranes is unlikely to result from isomerisation of a reduced (nido) carborane following desilylation. Instead, the source of the 4,1,6-MC(2)B(10) compounds is traced to desilylation of 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) by Li or Na prior to reduction. The supraicosahedral metallacarboranes 1,8-Me(2)-4-Cp-4,1,8-closo-CoC(2)B(10)H(10), 1,12-Me(2)-4-Cp-4,1,12-closo-CoC(2)B(10)H(10) and 1,12-Me(2)-4-(p-cymene)-4,1,12-closo-RuC(2)B(10)H(10) are also reported with all new species characterised both spectroscopically and crystallographically.  相似文献   

6.
Oxidation of closo-carboranyl diphosphines 1,2-(PR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr) and closo-carboranyl monophosphines 1-PR(2)-2-R'-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr, Cy; R'=Me, Ph) with hydrogen peroxide, sulfur and elemental black selenium evidences the unique capacity of the closo-carborane cluster to produce uncommon or unprecedented P/P(E) (E=S, Se) and P=O/P=S chelating ligands. When H(2)O(2) reacts with 1,2-(PR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr), they are oxidized to 1,2-(OPR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr). However, when S and Se are used, different reactivity is found for 1,2-(PPh(2))(2)-1,2-closo-C(2)B(10)H(10) and 1,2-(PiPr(2))(2)-1,2-closo-C(2)B(10)H(10). The reaction with sulfur produces mono- and dioxidation products for R=Ph, whereas Se produces the mono-oxidation product only. For R=iPr, only monooxidation takes place with S, and the second C(c)-PiPr(2) bond breaks to yield 1-SPiPr(2)-1,2-closo-C(2)B(10)H(11). When Se is used, only 1-SePiPr(2)-1,2-closo-C(2)B(10)H(11) is formed. The potential of the mono-chalcogenide carboranyl diphosphines 1-EPPh(2)-2-PPh(2)-1,2-closo-C(2)B(10)H(10) (E=S, 9; Se, 15) to behave as unsymmetric chelating bidentate ligands was studied for different metal complexes, different solvents and in the solid state. Dechalcogenation takes place in each case. Computational studies provided information on the P=E (E=S, Se) bonds. Steric effects block the bonding ability of the P=E group due to interactions between the chalcogen and the neighbouring hydrogen atoms (three from the phenyl rings and one from the carborane cluster). The electronic effects originate from the strongly electron-withdrawing character of the closo carborane cluster, which polarizes the P=E (E=S, Se) bond towards the phosphorus atom. As a consequence, the E atom is the electron-poor site and the P atom the electron-rich site in the P=E bond.  相似文献   

7.
Decaborane(14) reacts with 1-(CH(3))(3)SiC&tbd1;CC(4)H(9) in the presence of dimethyl sulfide to give the new alkenyldecaborane 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) (I). Crystal data for 5-(S(CH(3))(2))-6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11): space group P2(1)/n, monoclinic, a = 9.471(1) ?, b = 13.947(3) ?, c = 17.678(3) ?, beta = 100.32(1) degrees. A total of 3366 unique reflections were collected over the range 2.0 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.083; R(w)(F)() = 0.094. The single-crystal X-ray structure of 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) (A) is also reported. Crystal data for 5-(S(CH(3))(2))-6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11): space group, P2(1)2(1)2(1), orthorhombic, a = 9.059 (3) ?, b = 12.193(4) ?, c = 21.431(3) ?. A total of 4836 unique reflections were collected over the range 6 degrees /= 3sigma(F(o)(2)) and were used in the final refinement. R(F)() = 0.052; R(w)(F)() = 0.059. The reactions of 5-(S(CH(3))(2))6-[(CH(3))(3)Si(C(4)H(9))C=CH]B(10)H(11) and 5-(S(CH(3))(2))6-[((CH(3))(3)Si)(2)C=CH]B(10)H(11) with a variety of alkyl isocyanides were investigated. All of the alkenyl monocarbon carboranes reported are the result of incorporation of the carbon atom from the isocyanide into the alkenyldecaborane framework and reduction of N&tbd1;C bond to a N-C single bond. The characterization of these compounds is based on (1)H and (11)B NMR data, IR spectroscopy, and mass spectrometry.  相似文献   

8.
Syntheses, properties, and synthetic applications of 13-vertex closo- and nido-carboranes are reported. Reactions of the nido-carborane salt [(CH2)3C2B10H10]Na2 with dihaloborane reagents afforded 13-vertex closo-carboranes 1,2-(CH2)3-3-R-1,2-C2B11H10 (R = H (2), Ph (3), Z-EtCH=C(Et) (4), E-(t)BuCH=CH (5)). Treatment of the arachno-carborane salt [(CH2)3C2B10H10]Li4 with HBBr2.SMe2 gave both the 13-vertex carborane 2 and a 14-vertex closo-carborane (CH2)3C2B12H12 (8). On the other hand, the reaction of [C6H4(CH2)2C2B10H10]Li4 with HBBr2.SMe2 generated only a 13-vertex closo-carborane 1,2-C6H4(CH2)2-1,2-C2B11H11 (9). Electrophilic substitution reactions of 2 with excess MeI, Br2, or I2 in the presence of a catalytic amount of AlCl3 produced the hexa-substituted 13-vertex carboranes 8,9,10,11,12,13-X6-1,2-(CH2)3-1,2-C2B11H5 (X = Me (10), Br (11), I (12)). The halogenated products 11 and 12 displayed unexpected instability toward moisture. The 13-vertex closo-carboranes were readily reduced by groups 1 and 2 metals. Accordingly, several 13-vertex nido-carborane dianionic salts [nido-1,2-(CH2)3-1,2-C2B11H11][Li2(DME)2(THF)2] (13), [[nido-1,2-(CH2)3-1,2-C2B11H11][Na2(THF)4]]n (13a), [[nido-1,2-(CH2)3-3-Ph-1,2-C2B11H10][Na2(THF)4]]n (14), [[nido-1,2-C6H4(CH2)2-1,2-C2B11H11][Na2(THF)4]]n (15), and [nido-1,2-(CH2)3-1,2-C2B11H11][M(THF)5] (M = Mg (16), Ca (17)) were prepared in good yields. These carbon-atom-adjacent nido-carboranes were not further reduced to the corresponding arachno species by lithium metal. On the other hand, like other nido-carborane dianions, they were useful synthons for the production of super-carboranes and supra-icosahedral metallacarboranes. Interactions of 13a with HBBr2.SMe2, (dppe)NiCl2, and (dppen)NiCl2 gave the 14-vertex carborane 8 and nickelacarboranes [eta5-(CH2)3C2B11H11]Ni(dppe) (18) and [eta5-(CH2)3C2B11H11]Ni(dppen) (19), respectively. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray diffraction studies.  相似文献   

9.
The 10-vertex phosphadicarbaboranes, 6-R-arachno-6,8,9-PC(2)B(7)H(11) (1) (R = Ph 1a or Me 1b) and 6-R-arachno-6,5,7-PC(2)B(7)H(11) (2) (R = Ph 2a or Me 2b) have been synthesized using in situ dehydrohalogenation reactions of RPCl(2) (R = Ph or Me) with the arachno-4,5-C(2)B(7)H(13) and arachno-4,6-C(2)B(7)H(13) carboranes, respectively. X-ray crystallographic determinations in conjunction with DFT/GIAO/NMR calculations and NMR spectroscopic studies have established that both 1 and 2 have open cage structures based on an icosahedron missing two vertexes. The two isomeric compounds differ in the positions of the carbons and bridging hydrogens on the open face. Studies of the reactions of 2a with BH(3).THF, S(8), and hydrogen peroxide demonstrated that 2a shows strong donor properties yielding the compounds endo-6-H(3)B-exo-6-Ph-arachno-6,5,7-PC(2)B(7)H(11) (3), endo-6-S-exo-6-Ph-arachno-6,5,7-PC(2)B(7)H(11) (4), and endo-6-O-exo-6-Ph-arachno-6,5,7-PC(2)B(7)H(11) (5) in which the BH(3), S, and O substitutents are bonded to an electron lone pair localized at the phosphorus endo-position. The reaction of 2a with an excess of S(8) results in the loss of a framework boron to produce the unique open-cage compound micro(7,8)-[HS(Ph)P]-hypho-7,8-C(2)B(6)H(11) (6). 2a also formed the donor complexes cis-(eta(1)-[6-Ph-arachno-6,5,7-PC(2)B(7)H(11)])(2)PtBr(2) (7) and trans-(eta(1)-[6-Ph-arachno-6,5,7-PC(2)B(7)H(11)])(2)PdBr(2) (8) in which the metal fragment is bonded in an eta(1)-fashion at the phosphorus endo-position. In these complexes, 2a is functioning as a two-electron sigma donor to the metals and can thus be considered as an analogue of the PR(3) ligands in the classical cis-(PPh(3))(2)PtBr(2) and trans-(PPh(3))(2)PdBr(2) coordination complexes. Although 1a did not show the donor properties exhibited by 2a, its dianion 6-Ph-6,8,9-PC(2)B(7)H(9)(2)(-) (1a(2)()(-)()) readily formed eta(4)-coordinated complexes with late transition metals including 8-Ph-7-(Ph(3)P)(2)-nido-7,8,10,11-PtPC(2)B(7)H(9) (9), 7-Ph-11-(eta(5)-C(5)H(5))-nido-11,7,9,10-CoPC(2)B(7)H(9) (10), and commo-Ni-(7-Ni-8'-Ph-nido-8',10',11'-PC(2)B(7)H(9))(7-Ni-8-Ph-nido-8,10,11-PC(2)B(7)H(9)) (11).  相似文献   

10.
Reduction of 1,2-closo-C2B10H12 followed by treatment with [RuCl2(p-cymene)]2(p-cymene = C6H4MeiPr-1,4) affords the 13-vertex ruthenacarborane 4-(p-cymene)-4,1,6-closo-RuC2B10H12, characterised both spectroscopically and, in two crystalline forms, crystallographically. Although asymmetric in the solid state, having a docosahedral cage architecture with cage C atoms at vertices 1 and 6, this species clearly has Cs symmetry on the NMR timescale at room temperature. However, the fluctional process in operation can be arrested at low temperature, and an activation energy of 43.1 kJ mol(-1) is estimated. A computational study of the related species 4-(eta-C6H6)-4,1,6-closo-RuC2B10H12 reveals that the fluctionality is due to a double diamond-square-diamond process, first suggested by Hawthorne et al for the analogous CpCo species. These calculations yield an activation energy of 40.4 kJ mol(-1), in excellent agreement with that derived from experiment. Reduction of 1,2-Ph(2)-1,2-closo-C2B10H10 followed by treatment with [RuCl2(eta-C6H6)]2 or [RuCl2(p-cymene)]2 yields the analogous species 1,6-Ph2-4-(eta-C6H6)-4,1,6-closo-RuC2B10H10 and 1,6-Ph2-4-(p-cymene)-4,1,6-closo-RuC2B10H10, respectively. These C,C-diphenyl compounds were again studied spectroscopically and crystallographically, the p-cymene species again showing two crystalline modifications. In contrast to their CpCo and Cp*Co analogues all three ruthenacarboranes do not undergo isomerisation in refluxing toluene.  相似文献   

11.
The reaction of the dinuclear cobalt compound [(CpCoS(2)C(2)B(10)H(10))(CpCoSC(2)B(10)H(11))(n-C(4)H(9)S)] (1) with HC≡CC(O)Fc leads to the cobalt-free products (C(2)B(10)H(10))(SCH=CHCOFc)(2) (4-6), (S(2)C(2)B(10)H(10))(HC=CCOFc) (7), and (C(2)B(10)H(11))(SCH=CHCOFc) (8, 9). 4-6 are produced by hydrosulfuration of the alkyne at the 1,2-dicarba-closo-dodecaborane-dithiolate ligand with the generated vinyl groups in Z/Z, Z/E and E/E configurations, respectively. In 7, the alkyne is added to 1,2-dicarba-closo-dodecaborane-dithiolate at the two sulfur sites. 8 and 9 are the products of alkyne hydrosulfuration at the 1,2-dicarba-closo-dodecaborane-1-monothiolate ligand with the generated vinyl group in either Z or E configuration. The treatment of 1 with HC≡CCO(2)Me gives rise to the parallel products (C(2)B(10)H(10))(SCH=CHCO(2)Me)(2) (10-12) and (C(2)B(10)H(11))(SCH=CHCO(2)Me) (13, 14). All of the new compounds have been characterized by IR, NMR, elemental analysis and mass spectroscopy. The structures of compounds 4, 7, and 8 have also been determined by single-crystal X-ray diffraction analysis.  相似文献   

12.
The synthesis of N,S-heterodisubstituted 1-(2'-pyridyl)-2-SR-1,2-closo-C2B10H10 compounds (R = Et, 2; R = (i)Pr, 3) has been accomplished starting from 1-(2'-pyridyl)-l,2-closo-C2B10H11 (1), and their partial deboronation reaction leading to the structurally chiral [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H10]-derivatives (R = Et, [4]-; R = (i)Pr, [5]-) has been studied. Capillary electrophoresis combined with the chiral selector alpha-cyclodextrin has permitted the separation of the electrophoretically pure racemic [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H11]- ions into two peaks each one corresponding to the interaction of one enantiomer with the alpha-cyclodextrin. The N,S-heterodisubstituted o-carborane containing a mercapto group, 1-(2'-pyridyl)-2-SH-1,2-closo-C2B10H10, 1, is one of the two examples of a rigid bidentate chelating (pyridine)N-C-C-C-S(H) motif having been structurally fully characterized. To study the potential of such a binding site, 1 has been tested as a ligand with metal ions requiring different coordination numbers, two (Au(+)) and four (Pd2+ and Rh+). The crystal structures of the Pd(II) and Au(I) complexes are reported. For the Pd(II) complex, 1 acts as a bidentate ligand whereas for Au(I), 1 acts as a monodentate ligand through the thiolate.  相似文献   

13.
A new family of photoluminescent neutral and anionic di-carboranyl and tetra-carboranyl derivatives have been synthesized and characterized. The reaction of α,α'-bis(3,5-bis(bromomethyl)phenoxy-m-xylene with 4 equiv. of the monolithium salt of 1-Ph-1,2-C(2)B(10)H(11) or 1-Me-1,2-C(2)B(10)H(11) gives the neutral tetracarboranyl-functionalized aryl ether derivatives closo-1 and closo-2, respectively. The addition of the monolithium salt of 1-Ph-1,2-closo-C(2)B(10)H(11) to α,α,'-dibromo-m-xylene or 2,6-dibromomethyl-pyridine gives the corresponding di-carboranyl derivatives closo-3 and closo-4. These compounds, which contain four or two closo clusters, were degraded using the classical method, KOH in EtOH, affording the corresponding nido species, which were isolated as potassium or tetramethylammonium salts. All the compounds were characterized by IR, (1)H, (11)B and (13)C NMR spectroscopy, and the crystal structure of closo-3 was analysed by X-ray diffraction. The carboranyl fragments are bonded through CH(2) units to different organic moieties, and their influence on the photoluminescent properties of the final molecules has been studied. All the closo- and nido-carborane derivatives exhibit a blue emission under ultraviolet excitation at room temperature in different solvents. The fluorescence properties of these closo and nido-derivatives depend on the substituent (Ph or Me) bonded to the C(cluster), the solvent polarity, and the organic unit bearing the carborane clusters (benzene or pyridine). In the case of nido-derivatives, an important effect of the cation is also observed.  相似文献   

14.
Reduction of the tethered carborane 1,2-(CH2)3-1,2-closo-C2B10H10 followed by treatment with CoCl2/NaCp, [(p-cymene)RuCl2]2(p-cymene=C6H4MeiPr-1,4), (PMe2Ph)2PtCl2 or (dppe)NiCl2(dppe=Ph2PCH2CH2PPh2) affords reasonable yields of the new 13-vertex metallacarboranes 1,2-(CH2)3-4-Cp-4,1,2-closo-CoC2B10H10 (1), 1,2-(CH2)3-4-(p-cymene)-4,1,2-closo-RuC2B10H10 (2), 1,2-(CH2)3-4,4-(PMe2Ph)2-4,1,2-closo-PtC2B10H10 (3) and 1,2-(CH2)3-4,4-(dppe)-4,1,2-closo-NiC2B10H10 (4), respectively. All compounds were characterised spectroscopically and crystallographically. The cobalt and ruthenium species 1 and 2 have Cs symmetry in both solution and the solid state, having henicosahedral cage structures featuring a trapezoidal C1C2B9B5 face. The platinum and nickel compounds 3 and 4 have asymmetric docosahedral cage structures in the crystal (the more so for 4 than for 3) although both appear, by 11B and 31P NMR spectroscopy, to have Cs symmetry in solution. Low-temperature experiments on the more soluble platinacarborane could not freeze out the diamond-trapezium-diamond fluctional process that we assume is operating in solution, and we therefore conclude that this process has a relatively low activation barrier, probably <35 kJ mol-1.  相似文献   

15.
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (8(-)); [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (9(-)) and [8,8'-mu-(1',2'-C(6)H(4))-1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(9))(1',2'-C(2)B(9)H(10))](-) (10(-)) ions have been prepared from [8,8'-mu-(1',2'-C(6)H(4))-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (2(-)). Thus, depending on the chlorosilane, the temperature and the stoichiometry of nBuLi used, it has been possible to control the number of substituents on the C(c) atoms and the nature of the attached silyl function. All compounds were characterised by NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry; [NMe(4)]-3, [NMe(4)]-4 and [NMe(4)]-7 were successfully isolated in crystalline forms suitable for X-ray diffraction analyses. The 4(-) and 8(-) ions, which contain one bridging -mu-SiMe(2) group between each of the dicarbollide clusters, were unexpectedly obtained from the reaction of the monolithium salts of 1(-) and 2(-), respectively, with Me(2)SiHCl at -78 degrees C in 1,2-dimethoxyethane. This suggests that an intramolecular reaction has taken place, in which the acidic C(c)-H proton reacts with the hydridic Si-H, with subsequent loss of H(2). Some aspects of this reaction have been studied by using DFT calculations and have been compared with experimental results. In addition, DFT theoretical studies at the B3 LYP/6-311G(d,p) level of theory were applied to optimise the geometries of ions 1(-)-10(-) and calculate their relative energies. Results indicate that the racemic mixtures, rac form, are more stable than the meso isomers. A good concordance between theoretical studies and experimental results has been achieved.  相似文献   

16.
The nature of nucleophiles greatly influences the reactivity patterns of 13-vertex carboranes. μ-1,2-(CH(2))(3)-1,2-C(2)B(11)H(11) reacts with Et(3)N/MeOH, pyridine or bipyridine to give cage-boron and -carbon extrusion products nido-CB(10) or closo-CB(10), or a cage-boron extrusion compound closo-C(2)B(10) while the cage-carbon extrusion species closo-CB(11) monoanions are produced by treatment with MeOH or Ph(3)P.  相似文献   

17.
The reaction between B(2)(NMe(2))(4) and 1,2-(NH(2))(2)-4-Bu(t)C(6)H(3) affords the diborane(4) compound 1,2-B(2){1,2-(NH)(2)-4-Bu(t)C(6)H(3)}(2) as the exclusive product whilst the reaction between rac-1,2-(NH(2))(2)C(6)H(10) and B(2)(NMe(2))(4) also affords only the 1,2-isomer, i.e. 1,2-B(2){1,2-(NH)(2)C(6)H(10)}(2), which is shown to be the more stable isomer by computational methods. The previously reported compounds 1,1-B(2){1,2-(NH)(2)C(6)H(4)}(2) and 1,2-B(2){1,2-(NH)(2)C(6)H(4)}(2) both react with four equivalents of Bu(n)Li to give what are presumed to be tetra-anions which react further with MeI, SnClMe(3) or SnClPh(3) to give the tetrasubstituted products 1,1-B(2){1,2-(NMe)(2)C(6)H(4)}(2), 1,1-B(2){1,2-(NSnMe(3))(2)C(6)H(4)}(2) and 1,2-B(2){1,2-(NSnPh(3))(2)C(6)H(4)}(2) respectively. The compound 1,1-B(2){1,8-(NH)(2)C(10)H(6)}(2) has also been prepared from the reaction between B(2)(NMe(2))(4) and 1,8-diaminonaphthalene. Lithiation and subsequent reaction with SnClMe(3), SnCl(2)Me(2) or SnCl(2)Ph(2) affords 1,1-B(2){1,8-(NSnMe(3))(2)C(10)H(6)}(2), 1,1-B(2){1,8-(N(2)-μ-SnMe(2))C(10)H(6)}(2) and 1,1-B(2){1,8-(N(2)-μ-SnPh(2))C(10)H(6)}(2) respectively. All new compounds have been characterised by X-ray crystallography.  相似文献   

18.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

19.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

20.
Reduction of 1,12-closo-C2B10H12 followed by reaction with the appropriate metal halide and metathesis with either [K(18-crown-6)]Br or [BTMA]Cl ([BTMA] = [C6H5CH2N(CH3)3]+) affords isolable salts of the supraicosahedral metallacarborane sandwich anions [4,4-M-(1,10-closo-C2B10H12)2]n- in moderate to good yield. Compounds prepared are [BTMA][4,4-Co-(1,10-closo-C2B10H12)2] ( 1), [K(18-crown-6)][4,4-Co-(1,10-closo-C2B10H12)2] ( 2), [K(18-crown-6)]2[4,4-Ni-(1,10-closo-C2B10H12)2] ( 3), [K(18-crown-6)]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 4), [BTMA]2[4,4-Fe-(1,10-closo-C2B10H12)2] ( 5) and [K(18-crown-6)]2[4,4-Ti-(1,10-closo-C2B10H12)2] ( 6). Oxidation of the iron(II) species 4 and 5 with FeCl3 in THF generates the iron(III) analogues [K(18-crown-6)][4,4-Fe-(1,10-closo-C2B10H12)2] ( 7) and [BTMA][4,4-Fe-(1,10-closo-C2B10H12)2] ( 8), respectively. All diamagnetic compounds were characterised spectroscopically and the structures of 1, 3, 4, 6, 7 and 8 were established by single crystal X-ray diffraction. All anions have the anticipated cluster structures with two docosahedral 13-vertex cages joined at the central metal atom (the common degree-six vertex 4). Carbon atoms occupy the degree-four vertex 1 and the degree-five vertex 10. 11B NMR spectroscopy suggests the anions have, on the NMR timescale, C2h symmetry in solution at room temperature, consistent with free rotation, or at least substantial libration, of cage units about the long molecular axis. In the solid state the relative conformations of the two cages may be rationalised by simple bonding arguments, the single exception being the conformation of 4, in which both cages are subject to directional B-H...K+ interactions to the [K(18-crown-6)]+ counterion. The salts 3, 6 and 7 also show B-H...K+ interactions but involving one cage only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号